The tracking control dynamic performance and external force self-sensing ability of minimally invasive surgical instrument are the bottleneck problems in restricting the refine operation of laparoscope surgical robot. This project focuses on the minimally invasive instrument of laparoscope surgical robot, in order to improve the tracking control dynamic performance and realize the external force self-sensing. The key technologies include flexible driving, tracking control, and external force self-sensing, et al, are studied through integrated using multidisciplinary modeling, joint simulation technology and experimental research methods. The innovative design, coupled dynamics modeling and parameter identification, key performance indicators analyzing of cable-driven series elastic actuator, are carried out for exploring its driving mechanism and dynamic characteristics. The configuration design of minimally invasive surgical instrument and dimensional optimization, coupled kinematics and dynamics modeling, compensation for time-varying parameters of the cable-pulley system, are studied with establishing time-delay compensation method considering coupled multi-factor, for improving the dynamic performance of tracking control. The position/force disturbance observer of flexible driving system is designed with proposing the estimation strategy and error compensation method of instrument’s external force disturbance. The experimental prototype development and system dynamic parameter identification are carried out for the minimally invasive surgical instrument; meanwhile, the comprehensive performance experiments are carried out for verifying the feasibility and effectiveness of flexible driven, tracking control and external force self-sensing; the results can provide the theoretical basis and technical support for the development and application of flexible driven minimally invasive surgical instrument with external force self-sensing ability.
微创手术器械的跟踪控制动态性能和外力感知能力是制约腹腔镜手术机器人完成精细操作的瓶颈问题。本项目以腹腔镜手术机器人微创器械为研究对象,以提高其跟踪控制动态性能、实现外力自感知为目标,综合运用多学科建模、联合仿真技术和实验研究手段,研究微创手术器械柔性驱动、跟踪控制与外力自感知等关键技术。开展柔索牵引串联弹性驱动器创新设计、耦合动力学建模与参数辨识、关键性能指标分析,探索其驱动机理与动态特性;研究4自由度微创手术器械构型设计与尺度优化、耦合运动学与动力学建模、索轮系统时变参数补偿,构建多因素耦合时变迟滞补偿方法,以提高跟踪控制动态性能;设计柔性驱动系统位/力扰动观测器,提出器械外力扰动估计策略与误差补偿方法;进行微创手术器械实验样机研制与系统动态参数辨识,开展综合性能实验验证柔性驱动、跟踪控制、外力自感知的可行性和有效性,为外力自感知柔性驱动微创手术器械的开发和应用提供理论依据和技术支撑。
微创外科手术机器人高性能跟踪控制与外力感知技术属于国内外学者在先进手术机器人领域竞相研究的热点和前沿问题,在智能医疗机器人领域具有广阔的应用前景。本项目针对微创手术器械的跟踪控制和外力感知方面的技术难题,主要开展了微创外科手术机器人执行器结构设计、驱动机理、跟踪控制策略与外力自感知方法等研究,主要研究内容包括:(1)设计了一种面向微创外科手术机器人微创器械的反向自驱动柔索牵引串联弹性驱动器,深入研究了“索轮系统”非线性迟滞现象与多因素耦合迟滞补偿方法,实现了较高精度的长距离“索轮系统”驱动转动关节转角跟踪控制;(2)针对微创外科手术机器人微创器械的精准跟踪控制问题,提出了基于“索轮系统”非线性迟滞补偿方法与关节转角估计器的运动控制策略,采用模糊自适应PID控制策略实现了驱动器转动关节的全闭环运动控制,大幅提升了跟踪控制动态性能;(3)针对微创外科手术机器人操作力感知问题,在柔索牵引串联弹性驱动器高性能跟踪控制的基础上,设计了柔性驱动系统位/力扰动观测器,提出了器械外力扰动估计与误差补偿策略,实现了无力传感器条件下基于驱动系统扰动信息的微创手术机器人微创器械外力自感知的估计方法;(4)研制了柔索牵引串联弹性驱动器实验样机及其综合性能测试平台,并试制了微创手术机器人柔索驱动柔性腹腔镜与柔性微创器械,综合开展了运动学标定、动力学辨识、跟踪控制与外力自感知等实验研究,为此类刚柔耦合驱动微创手术器械的精确跟踪控制、性能实验和分析评估等实际应用提供理论和实验基础。项目执行期间在IEEE Sensors Journal等国际期刊和国际会议上发表学术论文6篇,其中期刊论文3篇、会议论文3篇(均为第一标注),申请并公开发明专利7项(其中已授权1项),登记软件著作权3件。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
手术机器人弹性柔索驱动微器械精准位置控制与外力自主检测方法研究
高速柔索牵引摄像机器人机动性与稳定性研究
非晶合金微创手术器械精密高效制造理论与工艺
微创手术器械的生物力学安全性及被动保护模块设计研究