Aiming at the common problem of miro-polluted water caused by refractory pharmaceutical and personal care products (PPCPs), this project propose to construct Fe/N codoped carbon (Fe-N-C) nanoreactors for the activation of peroxymonosulfate (PMS) as an innovative Fenton-like system to degrade typical PPCPs such as norfloxacin, carbamazepine and diclofenac. The ternary components of the catalysts will be beneficial to the formation of active sites and electron transfer, while the nanoreactor structures make for high-exposure active sites and fast mass transport. These merits enable the Fe-N-C nanoreactor to serve as efficient and stable Fenton-like catalyst over a wide pH range. Appropriate precursors and templates will first be chosen to assemble Fe-N-C nanoreactor with highly exposed active sites and fast diffusivity. The dynamic analysis of PPCPs degradation and optimization of reaction conditions will be performed. Also, the structure-activity relationship between the natures of nanoreactors and the decomposition of PPCPs will be investigated on the basis of the diverse control experiments and characterizations. Meanwhile, the intermediates of PPCPs, active species in the system, the locations of active sites as well as the interfacial processes of catalytic reaction will be identified to build an efficient and stable Fenton-like system with explicit mechanism for effective control of PPCPs.
针对水源普遍存在药物及个人护理品(PPCPs)微污染和难处理的问题,结合非均相类Fenton技术的发展现状,本项目提出构筑Fe/N共掺杂碳(Fe-N-C)纳微反应器催化激活单过氧硫酸氢盐(PMS)处理水中典型PPCPs(如诺氟沙星、卡马西平和双氯芬酸等)。该类型催化剂的三元组成有利于电子传递及活性位点形成,纳微反应器结构则有利于活性位暴露和快速传质,这些特点使得其有望在宽pH条件下高效稳定地催化类Fenton反应发生。研究拟优选前驱体原料和模板材料,制备具有特殊孔道或腔体的Fe-N-C纳微反应器;优化反应条件,研究PPCPs降解动力学,阐释催化剂组成-结构-催化性能之间的构效关系;解析PPCPs中间产物、识别体系活性物种和催化剂活性位点、摸清催化氧化反应界面过程,构建高效稳定、机制明确的类Fenton氧化体系,实现对PPCPs污染的有效控制。
本项目针对水环境中痕量、顽固PPCPs难处理的难题,构筑了以Fe-N-C为主体的纳微反应器激活PMS并探究了其对目标污染物的降解效能与机理。项目发展了几种Fe-N-C纳微反应器(三维中空原子分散Fe-N/C-900和二维π共轭聚酞菁SAC-Fe-CPF)的可控制备新技术,探明了制备条件与催化剂物化特性之间的规律;结合催化剂表征和催化降解典型PPCPs的实验研究,探究了催化剂组成-结构-催化性能之间的构效关系,建立了在宽pH条件下高效稳定处理PPCPs的新型类Fenton反应体系;根据污染物降解规律和催化反应界面过程,阐明了目标PPCPs的降解途径以及Fe-N-C反应器的作用机制。在此基础上,拓展和深化了碱金属掺杂三维多孔有机N-C聚合物催化激活PMS降解典型PPCPs反应原理。在本项目的资助下,共发表学术论文25篇(均已标注受本项目资助),其中包括Chem. Commun., Environ. Sci. Technol.和Appl. Catal. B-Environ.等领域顶级期刊。申请发明专利11项,授权4项。培养博士研究生毕业2人,硕士研究生毕业4人。项目负责人获人才类项目浙江省杰青资助,并入选浙江省高校领军人才培养计划。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
中空核壳Fenton催化纳米反应器的构筑及其增效机制
木质材料VOCs智能微纳反应器仿生构筑及其诱捕消解机制
构筑yolk/shell型微反应器进行串联反应实现有机物Fenton降解
硝胺类高能炸药微/纳分级结构的构筑与性能研究