With advantages of four-wheel-independent-drive electric vehicle (FWID EV) on dynamics controllability and driving efficiency, it plays an important role in improving vehicle economy to conduct predictive control for energy-saving based on the road and traffic information ahead. While the energy-saving control should satisfy the constraints on dynamics safety, dynamics control of FWID EV is a complex control system where multiple control objectives are coupled including economy, safety and so on. Aiming at the above problems, this project will research on the energy-saving predictive control according to the road and traffic conditions ahead and the dynamics multi-objective control based on the coupling mechanism of safety and energy-saving control. The main topics of this project include: (1) research on the dynamic update method of vehicle speed constraint and prediction horizon length in energy-saving predictive control; (2) analysis on the influence of the target speed and wheel torque distribution on the energy-saving predictive control performance; (3) research on the influence of energy-saving predictive control on the dynamics safety , also the influence of actuator transient response performance on the coordination between multi control objectives; (4) research on the dynamics multi-objective optimization method and the control allocation algorithm of tire forces and actuators. The scientific significance of this research is to develop an energy-saving dynamic predictive control algorithm based on the road characteristics, which will improve the adaptability on different road condition and calculation efficiency. In addition, this project will illustrate the influence of the target speed and wheel torque distribution on the energy-saving control and dynamics safety control, and reveal the coupling mechanism of dynamics safety control and energy saving control, which will provide theory guide for the vehicle dynamics control with multi control objectives.
利用四轮独立驱动电动汽车在动力学可控性、驱动效率等方面的优势,依据前方道路交通信息进行预测节能控制,对提高车辆经济性具有重要作用。在节能控制过程中,需要满足动力学安全性的约束,因此其动力学控制是一种多目标耦合控制系统。本项目将针对四轮独立驱动电动汽车,研究预测节能控制,并基于安全、节能耦合控制机理,研究动力学多目标控制。重点研究:(1)基于道路特征的车速约束和预测域动态更新方法;(2)车速和车轮转矩分配对预测节能控制的影响规律;(3)预测节能控制对动力学安全性的影响规律、执行器动态特性对多目标协调过程的影响规律;(4)动力学多目标控制决策算法、轮胎力和执行器控制分配算法。本研究的科学意义在于:提出基于道路特征的预测节能动态控制算法,提高道路自适应性和控制效率;明确目标车速和车轮转矩分配对安全、节能控制的影响规律,揭示安全节能耦合控制机理,为四轮独立驱动电动汽车动力学多目标控制提供理论指导。
本项目针对四轮独立驱动电动汽车,研究预测节能控制,并基于安全、节能耦合控制机理,研究动力学多目标控制。通过项目研究,完成了预测节能控制算法开发,提出了基于神经网络的道路坡度预测、基于时间预测域的预测节能控制快速求解算法、基于线性时变模型预测控制的预测节能控制算法。揭示了四轮独立驱动电动汽车安全节能耦合控制机理,包括四轮独立驱动电动汽车动力学和节能控制潜力、转矩分配对系统效率影响机理、效率最优制动转矩、考虑行车工况因素的车辆相平面稳定性机理等。开发了基于轮胎逆模型和动态控制分配的四驱电动汽车动力学控制算法、纵向动力学控制算法、自适应巡航控制算法、综合交通安全和节能的预测巡航控制算法。最后进行了四轮独立驱动电动汽车动力学控制算法实车试验、坡度预测和预测巡航控制半实物仿真测试。研究结果表明,项目完成了预测的研究目标,研究成果对于四轮独立驱动电动汽车动力学节测节能和多目标控制具有理论和现实意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于LASSO-SVMR模型城市生活需水量的预测
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
复杂环境四轮独立驱动电动汽车多目标层级预测控制
基于多目标优化的四轮独立驱动电动汽车驱动转矩控制方法研究
四轮独立驱动电动汽车多目标优化与控制分配方法研究
考虑驾驶员特性的四轮独立驱动与转向电动汽车动力学控制研究