Stress granules(SGs) are cytoplasmic mRNA–protein aggregates formed upon stress in eukaryote. In mammals, SGs have been shown to function as mRNA triage centers and signaling centers, therefore play important roles in enhancing resistance to stress and protecting cells. It has been reported that plant cells contain SGs that are conserved from mammals under heat shock and oxidative stress, but the function of SGs formation and the mechanism of SGs assembly remain poorly understood. Our previously works showed that salt stress induced SGs formation, and a RNA binding protein Tudor-SN was a novel component of SGs. Tudor-SN bound GA20ox3 mRNA and accumulated to SGs to enhance the stability of GA20ox3 mRNA. Our work provided the first evidence that SGs may play important roles in plant stress adaption. On the basis of this study, we will investigate the roles of putative SGs-nucleated key proteins (RBP47 and UBP1) and Tudor-SN on SGs assembly, and furthermore the physiological functions of SGs formation under salt stress. This study will provide new insight for adaption mechanism of plant response to salt stress.
真核细胞在遇到逆境时会形成一种所谓应激颗粒(SGs)的细胞质信使RNA蛋白质复合体。在动物中大量研究表明SGs是逆境下RNA的分选位点及信号传递中心,对细胞的逆境适应和保护起着极为重要的作用。在植物中已报道在热激、氧化胁迫下形成与哺乳动物中类似的SGs,但对SGs的生理功能及形成机制还缺乏了解。我们前期工作表明盐胁迫下植物细胞中也形成SGs,而且RNA结合蛋白Tudor-SN是SGs的一个组分,在盐胁迫下Tudor-SN结合GA20ox3 mRNA,积聚到SGs中提高了mRNA的稳定性,为SGs可能参与植物逆境适应提供了实验证据。在此基础上,本项目将通过细胞生物学及分子生物学等手段进一步研究可能的SGs成核关键组分(RBP47、UBP1)以及Tudor-SN对SGs形成的影响,进而阐明SGs形成在植物盐逆境适应中的生理意义,为阐明植物适应盐逆境的机制提供新内容。
基因表达的转录后调节是应对剧烈环境变化的重要调节机制。细胞质RNA颗粒(RNA granules)在应对逆境过程中起重要作用,因而成为近年来基因转录后调控研究的热点内容。真核细胞中逆境下形成的应激颗粒(stress granules,SGs)是RNA颗粒的一种。在哺乳动物及酵母中已有大量研究表明SGs对细胞的逆境适应和保护起着极为重要的作用。在植物中已报道在热激、氧化胁迫下形成与哺乳动物中类似的SGs,但对SGs的生理功能及形成机制还缺乏了解。本实验室首次报道了拟南芥RNA结合蛋白TSN是SGs的组分,并在盐逆境下起重要作用。在此基础上本项目进一步明确了一种含DEAD-box域的RNA解旋酶(RNA helicase, RH)RH31是TSN1的互作蛋白,并通过原生质体瞬时表达实验、稳定转基因实验及放线菌酮敏感性实验确定了RH31是SGs的新组分。通过CRISPR/Cas9技术和基因过表达技术获得RH31的功能缺失突变体和过表达株系,通过对突变体在正常和盐胁迫条件下的表型分析表明,RH31是幼苗适应盐逆境所必需的。对RH31作用下游的靶RNA研究发现,一些耐盐相关基因mRNA的水平发生显著变化,其中At4G33720的mRNA水平变化尤为明显。At4G33720编码AtCAPE3,是一种富含半胱氨酸的小肽,我们也证明了AtCAPE3是盐逆境适应所必需的。RNA免疫共沉淀实验 (RIP) 及体内RNA降解实验 (RNA decay assay)进一步证明, RH31在体内可以相对特异的结合AtCAPE3 mRNA,并具有稳定AtCAPE3的mRNA水平的作用。此外我们也对SGs的核心组分RBP47和UBP家族成员进行了分析,发现他们均在ABA信号途径中起作用。上述研究结果为植物逆境适应机制的研究提供了新的见解。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community
Intracerebral Hemorrhage Induces Cardiac Dysfunction in Mice Without Primary Cardiac Disease
氯盐环境下钢筋混凝土梁的黏结试验研究
Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway
盐胁迫诱导的拟南芥主根负向重力性反应的机理研究
拟南芥保卫细胞质体醌介导气孔关闭的叶绿体基质pH相关胁迫应激启动机制
Hy5/HYH在拟南芥盐胁迫诱导的转录记忆中的调控作用
盐胁迫诱导拟南芥细胞程序化死亡受乙烯调控的生理生化机制研究