Supercapacitor, famous for its fast charging-discharging property, environmental benignity and high power density, becomes prevalent as one of the most important solution for energy storage. Therefore, the synthesis of electrode material for supercapacitor is the state-of-art topic. Nickel cobalt oxide, with high specific capacitance and energy density, is one of the promising candidates. Nevertheless, the achievement of remarkable conductivity, superior rate capability and power density is still challenging. To tackle this issue, the introduction of graphene quantum dots with outstanding conductivity and remarkable edge activity is conceived. Hollow microsphere has several intriguing features, including ample reaction sites and short diffusion lengths, owing to its superior surface area and interval vacancy. It is also robust for accommodating the volume variation hence improving the cycling stability. In this backdrop, this project devises a strategy in decorating nickel cobalt oxide hollow microspheres with graphene quantum dots, aiming to take advantage of their respective merits. The effect of the distribution of the graphene quantum dots, the synthetic method of hollow microspheres, as well as the ratio and interfacial status on the supercapacitor performance will be carefully investigated. This effective strategy in tuning the structure and optimizing the chemical synthesis will be revealed. Moreover, the in-depth mechanism of the quantum dot decoration will be expounded. Ultimately, assisted by in-situ characterization and simulation on the performance alteration, this project may provide experimental foundation and enlighten the new vistas.
超级电容器充电时间短、循环寿命长且功率密度高,在储能领域受到广泛关注;氧化物材料比电容值和能量密度高,且廉价环保极具应用前景。然而氧化物材料面临导电性、倍率性能和功率密度低这些关键性科学问题。项目拟通过合成石墨烯量子点修饰双金属氧化物空心微球提升氧化物的储能性能。空心微球能提供充足反应位点,缩短离子扩散距离,且减轻循环时体积变化;石墨烯量子点导电性能优良、边缘活性高且有效避免空心微球团聚。深入研究量子点和空心微球的负载复合方式以及界面状态对超级电容器储能性能的影响。揭示调控组分结构、优化合成方法的有效措施,阐明量子点修饰改性电极材料的内在机理和影响规律。结合原位测试和材料计算,项目可以为超级电容器电极材料合成领域提供实验理论基础和思路。
项目执行期间通过静电纺丝法、水热模板法和原位生长等方法制备了碳基复合过渡金属氧化物复合超级电容器材料;研究了材料组分和结构等因素与电化学储能性能之间的内在关系;揭示调控组分结构、优化合成方法的有效措施,阐明电极材料的储能内在机理和影响规律。结合原位测试和材料计算,本项目为超级电容器电极材料合成领域提供实验理论基础和思路。多篇研究论文发表在多种国内外权威刊物上,如:Advanced Energy Materials、Materials Today、Small、Small Methods、Journal of Power Sources、Carbon等.发表SCI收录论文14篇,其中ESI高被引论文4篇。申请并授权了国家发明专利2项。项目执行期间共毕业了1位博士研究生和3位硕士研究生。建立了较为广泛的国际学术交流与合作关系。项目负责人张留洋2019年入选湖北省高层次人才计划和入选武汉理工大学15551人才工程;项目期间被聘为国内期刊《物理化学学报》的青年编委。
{{i.achievement_title}}
数据更新时间:2023-05-31
内点最大化与冗余点控制的小型无人机遥感图像配准
氯盐环境下钢筋混凝土梁的黏结试验研究
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
双粗糙表面磨削过程微凸体曲率半径的影响分析
具有环境响应的无机/有机复合微球、空心球的研究
具有多重响应的无机/有机复合微球、空心球的研究
无机空心微球增韧环氧树脂复合材料的界面设计及其阻尼特性
反应湿磨法控制合成无机微/纳米空心球的基础研究