The “pre-core/post-shell” or “pre-shell/post-core” strategy will be used to synthesize hollow nanoreactors composed of different core and shell materials, in which noble metals, quantum dots or their nanocomposites are served as the responsive centres and functional meso-SiO2 as the outer shell in the present proposal. The interplay between SiO2-based nanoreactors and the typical heavy metal ions will be investigated and the transformation of responsive signals caused by the interactions will be used to detect the concentration of the heavy metal ions. The structure-performance relationship among the mechanism of synergistic effect of core/shell, nanostructures, the functional modification and the recognition performance will be studied systematically in order to provide the guidance for the design of the functional nanoreactors. The porous shell and the hollow part of the nanoreactors between the core and shell will be optimized to improve the adsorptive ability for the heavy metal ions. The specific adsorption and selective detection of the nanoreactors for the target heavy metal ions will be fulfilled by the dual surface modifications of the core and shell. The responsive signals for the heavy metal ions will be enhanced greatly by adopting the micro/nanostructures with the especial morphologies and hybrid nanostructures as the responsive groups, in which higher sensitivity and stronger selectivity will be intergrated perfectly. The original innovativeness will be realized by the successful implement of the present project at different levels, including novel nanostructured materials, new detective principles, the integration of the enrichment and detection, which lays the solid foundation for the unified analyses of the target heavy metal ions with high efficiency, stability, selective enrichment, and ultra-sensitive detection.
本项目拟采用先核后壳或先壳后核的策略构筑以贵金属、量子点及其复合纳米结构为光学响应活性中心,以功能化介孔SiO2 为外壳的中空异质纳米反应器。考察SiO2 基纳米反应器与典型重金属离子的相互作用,依据由于识别作用导致的纳米反应器响应信号的变化来检测重金属离子。深入研究核与壳的协同作用机理以及其结构、功能化修饰与识别性能之间的构效关系,从而指导功能化纳米反应器的有效设计:优化介孔外壳以及芯与壳之间的空腔提高对重金属离子的富集能力;借助芯与壳的双重表面修饰或改性,提高对目标重金属离子的特异性吸附与识别能力;通过特殊微纳结构的构建、不同响应基团的优化组合与多功能纳米材料的复合来增强响应信号,实现高灵敏度和高选择性的统一。本项目的有效实施将在新材料体系、新型检测机制、富集与检测的集成等多个层面上实现创新,为建立针对水体环境中目标重金属离子的高效、稳定、选择性富集与超灵敏检测的一体化分析奠定基础。
本项目面向我国环境水质安全保障的重大需求,以水体环境中痕量重金属离子的选择性富集与高灵敏探测为目标,从纳米材料的设计制备、微观结构调控、高效选择性吸附去除水中典型微污染物等几个层面开展研究,主要研究内容如下:(1)采用新颖的先壳后核与激光刻蚀相结合的策略,通过向预先合成的介孔二氧化硅空心球中引入单核和多核的银纳米颗粒来完成反向构筑yolk-shell结构纳米反应器;(2)合成了双功能配位聚合物NH2-MIL-88(Fe),并研究了对水体中As(V)的高灵敏度检测和有效去除;(3)合成了三维泡沫炭/三氧化二铁纳米棒阵列复合材料,研究了及其对NO2-的电化学检测;(4)完成了铕基配位聚合物荧光探针的合成及其对水体中磷酸盐的检测;(5)完成了β-FeOOH纳米棒/泡沫炭多孔分级结构的制备及其对水体中砷的去除研究;(6)完成了UiO-66的可控制备及其对水体磷酸根的去除;(7)开展了镁铁层状氢氧化物微球/石墨烯的制备及其对水体中重金属的检测;(8)完成了镍铁层状氢氧化物纳米片阵列/碳布电极的制备及其对水体中亚硝酸根离子的检测;(9)完成了双金属Fe/Mg-MIL-88B的可控合成及其对水体中As(V)的选择性去除;(10)开展了MoS42-功能化的三维分级结构NiFe-LDH/泡沫碳复合材料及其对重金属的去除;(11)原位合成了NH2-MIL-53 /木炭复合材料实现对Pb(II)的选择性去除。本项目共发表SCI论文20篇,其中1区16篇;申请发明专利16项,授权发明专利5项。本项目的有效实施在新材料体系、新型检测机制、富集与检测的集成等多个层面上实现创新,为建立针对水体环境中目标重金属离子的高效、稳定、选择性富集与超灵敏探测的一体化分析奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于全模式全聚焦方法的裂纹超声成像定量检测
基于余量谐波平衡的两质点动力学系统振动频率与响应分析
响应面法优化藤茶总黄酮的提取工艺
基于图卷积网络的归纳式微博谣言检测新方法
基于表面等离激元介孔材料对POPs吸附富集效应的SERS定量痕量检测
基于多级孔结构SiO2构筑具有双重环境响应性药物控释智能材料的制备与表征
pH刺激响应“蛋黄-蛋壳”型介孔纳米反应器的构筑及其对苯甲醇选择性氧化反应的调控
基于卟啉的光学传感功能膜的构筑及其用于重金属离子的富集与检测