Fretting tribology behavior at the fitting interfaces of key structural components (e.g. satellite flywheel-bracket) in the spacecraft reduces the performance of the working components and results in structural failure or fatal accidents. The aim of this project is to gain insight into fretting motion behavior of the tight-fitting interfaces of spacecraft structural components, the coupling mechanism of the fretting motion and the induced fretting tribology behavior. The project will create new knowledge for reducing the damage of fretting tribology for designing long-living spacecrafts. Three key scientific topics will be investigated, including the characterization of fretting motion in the fitting interfaces among structure components, the coupling mechanism of fretting motion and fretting tribology behavior, and the prevention method of fretting damage based on the CVD diamond thin film. The key issues to study are the modeling of tribology behavior of fretting system, numerical simulation of contact mechanics of fretting interface and the effect of design parameters on fretting tribology behavior, experimental investigation of fretting motion and fretting tribology behavior, and the analysis of the mechanism of fretting damage, etc. A CVD diamond thin film will be designed and prepared on a widely space used titanium alloy component to reduce fretting damage. This project will yield significant scientific contribution and engineering application value. It closely accords with the national major needs, i.e., the development of long-living spacecrafts with higher accuracy, higher stability, and higher reliability.
飞轮支架是航天器广泛应用的关键连接件,飞轮运转会引起支架振动,这种振动在空间微重力、弱阻尼、冷热交变的工作条件下难以衰减,导致连接面的摩擦-振动耦合,直接影响有效载荷精度及稳定度,为进一步提高有效载荷精度及稳定度,需要针对微动损伤机理与防护技术进行深入研究。本项目针对卫星飞轮支架微动摩擦学现象,围绕其连接面的微动特性辨识、微动摩擦效应与损伤机理、微动损伤防护设计三大关键问题,首先开展复杂环境下微动特性辨识实验、非线性动力学建模与分析研究,获得微动特性规律及其参数辨识新方法;进而建立综合考虑复杂激励、尺度效应、表面界面效应的摩擦-振动耦合分析模型并结合先进表征技术与方法,揭示复杂环境下的摩擦-振动作用规律与微动损伤机理;最后,开发基于结构-性能协同效应的金刚石涂层设计制备新方法,为卫星飞轮支架的抗微动损伤防护提供基础理论。研究成果将为航天器连接件的微动损伤机理及防护提供理论支撑。
面向航天器可靠性、寿命、精度和稳定度增长需求,以卫星平台飞轮支架连接面为研究对象,旨在探索并建立针对连接件表界面长期微动作用规律分析及微动损伤防护的技术方法。本项目以理论分析、仿真与试验结合的方式,研究了航天器关键连接件的微动损伤机理。重点围绕复杂环境下连接面的微动特性测试、参数辨识和实验分析新方法,连接面微动摩擦效应与表面界面及结构的作用规律以及微动防护手段与性能优化等三个关键问题开展研究工作。采用先进的测振手段与有限元振动分析手段相结合,探究了连接件的微动特性;利用分子动力学、有限元仿真并与自主研发的微动摩擦磨损测试系统相结合,进行了微动摩擦学系统的建模与分析,揭示了连接件微动损伤机理;构建了金刚石涂层、石墨烯涂层的制备工艺以及性能优化方法,分析了缺陷对涂层性能的影响规律;最后,从微动防护设计过程中,拓展了摩擦-电学系统的设计,分析了载流摩擦与摩擦电效应的摩擦学、电学行为的关联性。以上研究为航天器关键连接件的微动损伤防护提供了理论基础和技术依据。相关研究工作在Carbon(IF: 7.466)、Applied Surface Science、Friction, Computational Materials Science,、Scientific Reports等期刊发表SCI论文13篇;在机械工程学报、摩擦学学报等期刊发表EI论文7篇;申请中国发明专利3项(已获授权2项);在世界摩擦学大会、全国摩擦学大会等国内外摩擦学学术会议上做报告11次(其中邀请报告3次)。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
低轨卫星通信信道分配策略
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
核电蒸汽发生器传热管高温微动损伤机理及防护研究
扭动微动磨损损伤力学机理研究
复合微动损伤机理的基础研究
髁突软骨的扭-切微动损伤机理研究