LiCoO2 is a commercial star material in lithium battery cathode materials,which has advantages of high working voltage platform, stable discharge, high specific energy and good cycle performance. However, experiments show it still faces capacity fading and poor cycle performance under high rate charge-discharge. From the perspective of structural dynamics,we intends to design LiCoO2 structure with high rate and cycle performance at high charge-discharge rate in this project. By low-temperature molten salt method (~200°C), the hexagonal layered high-temperature phase LiCoO2 nanosheet array would be prepared; Meanwhile, the followings would be investigated: (1) Controllable preparation of high-temperature phase LiCoO2 nanosheet array structures; (2) Effect of different molten salt conditions on the crystallinity and morphology of high-temperature phase LiCoO2; (3) Influence rules among Array structure parameter - molten salt reaction conditions - electrochemical properties. 3、Further, by reviewing the experimental results, we would reveal the influence mechanism of electrode charge-discharge dynamic process and provide reference for the design and low energy consumption preparation and high rate application of other lithium battery cathode materials.
LiCoO2是锂电池正极材料中的商业化多年的明星材料,具有工作电压高、放电平稳、比能量高、循环性能好等优点,然而实验表明,在大倍率充放电下,其仍然面临容量大幅衰减,循环性差的问题。本项目拟从动力学的角度对LiCoO2进行结构设计,使其在大倍率充放电下仍然保持高的倍率和循环性能。通过低温熔盐法(~200℃)制备六方层状高温相的LiCoO2纳米片阵列,系统性的研究:(1)高温相LiCoO2纳米片阵列结构的可控制备,(2)熔盐反应中不同熔盐条件对生成高温相钴酸锂结晶性、形貌的影响;(3)阵列结构-熔盐反应条件-电化学性能之间的影响规律。总结工作,揭示LiCoO2纳米片阵列电极充放电过程动力学的影响机制,进而对其他锂电池正极材料结构的设计、低能耗制备、和大倍率充放电下的使用提供借鉴。
为了提高钴酸锂正极材料的电化学性能,本项目从动力学的角度对LiCoO2进行结构设计,通过低温熔盐法制备六方层状高温相的LiCoO2纳米片阵列,使其在大倍率充放电下仍然保持高的倍率和循环性能。具体完成的研究内容及结果包括:(1)钴酸锂纳米片阵列结构的可控制备;(2)熔盐反应中不同熔盐条件对生成高温相钴酸锂结晶性、形貌的影响;钴酸锂纳米片阵列电化学性能的探究;(3)其它电化学储能体系和材料的探究。
{{i.achievement_title}}
数据更新时间:2023-05-31
多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法
制冷与空调用纳米流体研究进展
重金属-柠檬酸-针铁矿三元体系的表面络合模型研究
碳纳米管改性海泡石多孔陶瓷及其高效油水分离性能研究
石墨烯基TiO2 复合材料的表征及其可见光催化活性研究
熔盐电化学低温合成微/纳米SiC及其机理研究
RuO2/TiO2复合纳米管阵列的制备及其高倍率电化学储放锂性能
熔盐堆环境下结构材料辐照损伤机制及其高温熔盐腐蚀特性研究
熔盐电解法制备硅纳米材料及其电化学性能的研究