High-pressure common rail system is the cutting-edge core technology for modern diesel engine energy conservation and emission reduction, and high-speed electromagnetic actuator is one of critical components in the system determining the system’s flexible fuel injection law. While currently the high-speed electromagnetic actuator driving force, response speed and action consistency are both at lower level, thus by all of these imperfections the further development of diesel engine performance is restricted. Then a novel type of high-speed electromagnetic actuator based on permanent-magnet composite magnetic circuit was proposed in this application form to improve the actuator performance. However, on account of the strong coupling excitation between electromagnetic coil and permanent-magnet in time and space for the actuator, the influence mechanism of magnetic field transient on the actuator dynamic characteristics has not been studied as yet. Therefore, the issues are taken into consideration in the project, and the testing apparatus of the high-speed electromagnetic actuator dynamic behavior is designed, then the numerical simulation model of the actuator coupling multi-physical field is established. The dynamic variation rules of the energy flow and compound magnetic field will be obtained by the method of combining with numerical simulation and power band graph; in addition, the influence mechanism of magnetic field transient and energy conversion will be also revealed for the actuator. On this basis, correlation matrix and response surface with respect to the actuator characteristics will be built by the method of correlation analysis, hence the coupling interaction rules of key parameters can be revealed. Besides, by carrying out the research about decoupling method based on principal component analysis, the databases of decoupling factors determining the magnetic field rapid establishment and degaussing will be set up. At last, double check point feedback control method is proposed to solve the problem about the actuator consistency of dynamic response. It will provide theoretical basis for the design of high-speed electromagnetic actuator with the accomplishment of this project, and have great value for the perfection of high-pressure common rail system.
高压共轨系统是现代柴油机节能减排的先进核心技术,高速电磁执行器是使其实现灵活喷油规律控制的关键部件。而目前高速电磁执行器的驱动力、响应速度偏低及动作一致性较差,限制了柴油机性能的进一步提高。申请书提出一种基于永磁复合磁路的新型高速电磁执行器,然而由于电磁线圈与永磁体在时空上的强耦合励磁,导致磁场瞬变对动态特性的影响机理尚不清楚。课题拟以此为研究对象,设计高速电磁执行器动态特性试验装置,建立多物理场耦合的数值仿真模型,结合功率键合图理论,得出能量流向及复合磁场的动态变化规律,揭示复合磁场瞬变与能量转换机理。在此基础上,采用相关性分析构建相关性矩阵及响应面,揭示关键参数的耦合作用规律;通过开展基于主成分分析的解耦方法研究,建立决定磁场快速建立、消磁的解耦因子数据库;最后针对动态响应一致性提出双止点反馈控制方法。本课题的完成将为高速电磁执行器设计提供理论基础,对高压共轨系统的完善具有重要价值。
高压共轨系统是目前实现船用柴油机节能减排最先进的核心技术之一,高速电磁执行器是保证高压共轨系统实现灵活喷射性能的核心零部件。本项目建立并标定了新型高速电磁执行器静态磁网络模型和动态多物理场耦合数值仿真模型。对比分析了新型与传统高速电磁执行器电磁力工作特性,揭示了新型高速电磁执行器静态电磁力输出的特点;研究了新型高速电磁执行器特征结构参数对电磁力的影响规律,得出了各参数的作用机理。开展了永磁环与电磁线圈耦合励磁下的复合磁场动态特性研究,揭示了其磁场瞬变的机理;分析了复合磁场下新型高速电磁执行器各工作阶段及整个工作循环系统的能量变化与转换规律,提出了高速电磁执行器优化控制策略。进一步结合响应面法,研究分析了新型高速电磁执行器系统参数交互作用对电磁力的影响,揭示了参数间交互作用机理及其对电磁力的影响规律,得出了显著交互参数间的优化匹配原则;提出了一种基于序贯整定组合近似模型的复合磁场快速建立及消磁方法,得到了复合磁场快速建立及消磁数据库,实现了电、磁、机、液多物理场耦合与参数交互作用环境下新型高速电磁执行器的参数优化。通过软件止点检测方法和硬件电路止点检测方法研究,设计了用于检测高速电磁执行器驱动电流止点的逻辑电路,建立了高压共轨系统动态喷射性能的止点反馈闭环控制方法,实现了对系统动态喷射性能稳定性的闭环控制。通过研究发表学术论文21篇,其中SCI收录8篇、EI收录7篇;申请发明专利37项,其中已授权2项;登记软件著作权12项;获中国发明协会发明创新一等奖1项、船舶与海洋工程行业专利金奖1项;参加国内会议5次、国际会议3次。本项目完成对高速电磁执行器设计开发提供了新的思维方法,对高压共轨系统的完善具有重要理论意义和价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
卫生系统韧性研究概况及其展望
面向云工作流安全的任务调度方法
基于软磁复合材料的新型三维磁路永磁电机研究
共铁轭群集多电磁线圈印字机构磁路计算与动态特性
基于混合磁路磁力丝杠的复合结构永磁直线电机系统的基础研究
新型双定子螺旋复合运动永磁执行器运行机理和解耦控制研究