The aerospace pyrotechnically actuated separation device, a core mechanism to complete the key actions such as spacecraft inter-stage separation, satellite release and cabin ejection, is related to the safety and reliability of a spacecraft. The problem with unlocking instability of aerospace pyrotechnically actuated separation devices under the action of force-coupling environment has become a bottleneck restricting the efficient and stable service of new spacecrafts in China. Solid lubrication is the key technology to ensure the reliable unlocking of the pyrotechnically actuated separation device, and solid lubrication coating of sputtering molybdenum disulfide has been classified as the key material for aerospace pyrotechnically actuated separation in China. However, the traditional sputtering molybdenum disulfide coating undergoes many scientific and technical problems including poor impact and wear resistance, sensitivity to hot and humid environments and unclear friction mechanism. Given that it is difficult for the existing coating design theory and the sputtering process to prepare high performance molybdenum disulfide coating for aerospace pyrotechnically actuated separation devices, this project intends to reveal the anti-friction mechanism of molybdenum disulfide coating on the macro-fine-micro multi-level basis in combination with computational simulation and experimental analysis, guides the multi-scale design of the molybdenum disulfide coating components, crystal orientation and micro-# sodium structure, and finally achieves the toughness, anti-oxidation and atmospheric - vacuum adaptive low-friction integration characteristics of molybdenum disulfide coating through the coordinated control of sputtering process parameters to provide the theoretical and technical support for the engineering applications of sputtering molybdenum disulfide coating in the aerospace pyrotechnically actuated separation devices.
航天火工分离装置是完成航天器级间分离、卫星释放、舱体弹射等关键动作的核心机构,关系到航天器安全性和可靠服役。航天火工分离装置在力-耦合环境协同作用下的解锁不稳定问题已经成为制约我国新型航天器高效和稳定服役的瓶颈。固体润滑是保障火工分离装置可靠解锁的关键技术,国内已将溅射二硫化钼固体润滑涂层列为航天火工分离关键材料。然而,传统溅射二硫化钼涂层存在抗冲击和抗磨损性差、湿热环境敏感以及减摩机理不清等许多科学与技术问题。现有涂层设计理论和溅射工艺方法已难以实现航天火工分离装置高性能二硫化钼涂层的制备,本项目拟结合计算模拟和实验分析从宏-细-微观多层次揭示二硫化钼涂层的减摩机理,指导二硫化钼涂层成分、晶体取向和微/钠结构的多尺度设计,并通过溅射工艺参数的协同调控最终实现二硫化钼涂层强韧、抗氧化和大气-真空自适应低摩擦一体化特性,为溅射二硫化钼涂层在航天火工分离装置的工程化应用提供理论和技术支持。
航天火工分离装置是完成航天器级间分离、卫星释放、舱体弹射等关键动作的核心机构,关系到航天器安全性和可靠服役。航天火工分离装置在力-耦合环境协同作用下的解锁不稳定问题已经成为制约我国新型航天器高效和稳定服役的瓶颈。固体润滑涂层是保障火工分离装置可靠解锁的关键技术,国内已将溅射二硫化钼固体润滑涂层列为航天火工分离关键材料。然而,二硫化钼涂层在环境(湿气、热、真空)-力(冲击、摩擦)交互作用下的损伤机制和减摩机理仍不明晰,涂层成分、晶体取向、微/钠结构受众多磁控溅射工艺参数交互影响,可控制备难度大,这导致传统溅射二硫化钼固体润滑涂层依然存在抗冲击磨损性差、大气潮湿环境易氧化和环境适应性差的卡脖子问题。本项目开展了二硫化钼与环境因子相互作用及摩擦微观机理、强韧与低摩擦一体化二硫化钼涂层工艺、耐湿热二硫化钼涂层结构设计及抗氧化机制、二硫化钼涂层大气-真空自适应机制及环境模拟试验、航天火工分离装置二硫化钼涂层溅射工艺与应用研究。揭示出O2和H2O通过MoS2空位缺陷发生氧化反应的损伤新机理,探明了12种元素掺杂和3类MoS2晶体结构与涂层性能的关系规律,提出了微缺陷氧化抑制与摩擦学性能协同控制的多元/复合二硫化钼涂层设计方法,发展出多元/多层抗氧化MoS2涂层及溅射技术,研发的MoS2涂层体系在75%湿度下摩擦系数降低50%,盐雾后磨损降低86%,通过了军标体系内的严苛环境试验、文昌环境暴露适应性试验、15年高剂量原子氧加速辐照试验和热真空疲劳寿命试验,寿命延长2倍以上,解决了溅射二硫化钼涂层在潮湿环境和长期原子氧辐照下的性能劣化和早期失效的共性难题,为火工分离装置提供了多批次涂层配套,并成功应用于中国空间站天和核心舱柔性太阳翼伸展机构,为“引力波暴高能电磁对应体全天监测器”、“齐鲁一号”、“实践二十一号”等星帆板机构提供了关键共性材料。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
基于Pickering 乳液的分子印迹技术
简化的滤波器查找表与神经网络联合预失真方法
压电驱动微型精密夹持机构设计与实验研究
基于相似日理论和CSO-WGPR的短期光伏发电功率预测
海水环境CrC/C固体润滑复合涂层多尺度结构设计与减摩增韧机理研究
固体润滑剂与自润滑材料真空摩擦摩损性能的研究
纳微米复合梯度自润滑陶瓷刀具及其减摩耐磨机理研究
高性能固体润滑涂层研制及作用机理研究