Thermally activated delayed fluorescence (TADF) materials represent the future direction of highly efficient emitters due to its 100% internal quantum efficiency, which is comparable to the traditional phosphorescent emitters yet without employing any noble metals. TADF dendrimers with decent solution-processability are suitable for industrial large-scale production, and their unique three-dimensional arborescent structure could effectively suppress fluorescent quenching and thus improve the device performance. Nonetheless, they suffer from tedious synthetic procedure and limited structural tunablity. As a result, synthesizing high-performance substitutes with branched structure in a convenient, flexible and controllable way is an opportunity as well as a challenge for preparing solution-processable optoelectronic materials at the moment. . Chain-growth copper-catalyzed azide-alkyne cycloaddition (CuAAC) click polymerization, a new methodology that could produce narrowly distributed hyperbranched polymers with adjustable structural parameters such as molecular weight and degree of branching in one-pot at high efficiency, may offer an ideal solution to the above issue. This program will mainly focus on the design and synthesis of hyperbranched TADF polymers in high uniformity by using this technique, followed by systematic exploration of the structure-performance relationship. The surface functional units and internal TADF emitting groups would also be enriched through flexible molecular design, aiming to obtain a library of multifunctional light-emitting materials with satisfactory performance. The implementation of this project will not only offer an ideal synthetic platform for solution-processable TADF systems, but also is of great importance for theoretical study and practical applications of new generation organic electroluminescent materials.
热激活延迟荧光(TADF)材料无需贵金属参与即可媲美传统磷光材料100%的内量子效率。树枝状TADF大分子具备溶液可加工的特性,且其独特的三维支化结构可抑制荧光淬灭提升材料性能,然而其合成繁琐、自由度较低。如何简便、灵活、可控地合成具有支化结构的高性能替代材料,是当前溶液可加工型光电材料面临的机遇与挑战。. 链增长铜催化叠氮-炔环加成(CuAAC)点击聚合技术可一锅法高效地获得分子量、支化度等结构参数可控的窄分布超支化高分子。本项目主要通过该技术设计合成结构高度均一的超支化TADF材料,并揭示其分子结构与性能间的关系。进一步通过丰富表层功能单元及里层TADF发光基团,有望获得一系列高性能、多功能型发光材料。本项目的实施为发展溶液可加工型TADF分子体系提供了理想的合成平台,对新一代有机电致发光材料的理论研究和实际应用具有重要意义。
热激活延迟荧光(TADF)材料无需贵金属参与即可媲美传统磷光材料100%的内量子效率,是目前有机光电材料领域的研究重点。传统TADF 材料的设计通常采用高度扭曲的给受体型( D-A )结构,激发态结构弛豫大,发射光谱较宽,色纯度低下,极大限制了其在高清显示领域的应用。近年来,多重共振型TADF材料由于其刚性的分子骨架和交替的前线轨道分布表现出窄谱带TADF发光性质,因而备受关注。本项目围绕多重共振型TADF材料的分子设计及其光电性能调控,合成了一系列窄谱带、高效率、低滚降的蓝光及绿光材料,并在此基础上进一步对窄谱带发射的溶液加工型聚合物发光材料与应用进行了探索。本项目已发表第一/通讯作者论文SCI论文14篇,相应成果对新一代有机电致发光材料的理论研究和实际应用具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
面向云工作流安全的任务调度方法
TGF-β1-Smad2/3信号转导通路在百草枯中毒致肺纤维化中的作用
生物炭用量对东北黑土理化性质和溶解有机质特性的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
新型热激活延迟荧光OLED主体材料的设计、合成及光电性能研究
高效圆偏振热活化延迟荧光材料的设计、合成及其光电性能研究
高效长波长热活化延迟荧光材料的合成及光电性能研究
具有聚集诱导发光性能的热激活延迟荧光材料的合成与性能研究