Energy optimization problem in data gathering is crucial for Wireless Multimedia Sensor Networks (WMSNs) which is the advanced stage of Wireless Sensor Networks (WSNs) and one of the most important part of the Internet of Things (IoT). However, most related researches at home and abroad pay attention to the quality rather than the energy efficiency of data gathering technology itself. For this purpose, it is essential to solve the energy optimization problem of WMSNs nodes during their data gathering process. Tuple model of nodes and the cooperative relationship in data gathering as well as the interlayer cooperative system will be built. Then we will design a type of virtual data gathering model and an optimized node deployment method to achieve the covering scheduling under multi-objective constraints. Furthermore, to improve the energy efficiency of information processing, a type of variable granularity based data gathering method and an estimation algorithm about information compression cost will be studied and we will also study the data aggregation algorithm on the basis of relative information entropy for collaborative information processing. In addition, we prepare to solve the QoS based multi-path construction problem and design an adaptive adjustment mechanism about data gathering cycle as well as the node sleep scheduling method. Theories and algorithms of this project will be verified by the combination of simulation as well as a real physical system. We hope this project could promote the application and development of Wireless Multimedia Sensor Networks as well as the ubiquitous information system.
作为传感网发展的高级形式和物联网的重要组成部分,无线多媒体传感网数据收集点的能量优化问题至关重要。然而,当前国内外相关研究往往重点关注数据收集质量而非收集点自身能效。为此,本课题针对无线多媒体传感网数据收集点在数据收集过程中的能量优化问题开展研究,首先设计数据收集点元组模型,构建其收集协作组织关系与能量优化的层间协作体系,并以此为依托,建立虚拟数据收集点模型,设计优化部署方案,实现多目标约束下的数据收集点覆盖调度;随后,拟针对数据收集点信息处理能效问题,研究粒度可变的数据收集方法与信息流压缩代价评估问题,并实现基于相对信息熵的数据聚合机制,以完成高能效的协同信息处理;最后,拟解决研究保障QoS的多条数据收集路径的建立问题并实现自适应数据收集周期调整与数据收集点的休眠调度。本课题将通过仿真实验与实物系统相结合的方式进行验证,预计将对以无线多媒体传感网为主的泛在信息系统的应用起到一定推动作用。
作为传感网发展的高级形式和物联网的重要组成部分,无线多媒体传感网数据收集点的能量优化问题至关重要。然而,当前国内外相关研究往往重点关注数据收集质量而非收集点自身能效。为此,本课题针对无线多媒体传感网数据收集点在数据收集过程中的能量优化问题开展研究,首先设计了数据收集点元组模型,构建其收集协作组织关系与能量优化的层间协作体系,并以此为依托,建立虚拟数据收集点模型,设计优化部署方案,实现多目标约束下的数据收集点覆盖调度;随后,针对数据收集点信息处理能效问题,研究粒度可变的数据收集方法与信息流压缩代价评估问题,并实现了基于相对信息熵的数据聚合机制;最后,研究了保障QoS的多条数据收集路径的建立问题并实现自适应数据收集周期调整与数据收集点的休眠调度。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
论大数据环境对情报学发展的影响
监管的非对称性、盈余管理模式选择与证监会执法效率?
面向云工作流安全的任务调度方法
动物响应亚磁场的生化和分子机制
单跳射频能量捕获无线传感网供能和数据收集技术及其理论
基于优化协作与绿色计算的无线传感网感知数据的可控移动收集机制研究
基于时-空联合压缩的多媒体传感网数据收集技术研究
基于多媒体传感网的能量收集与监控分析技术研究