It is an attractive study focus, in these years, on manufacturing biomimetic robots that can simulate small animals' or insects' excellent capabilities in a particular situation and free human beings from extreme working conditions. In nature, many animals, such as geckos, spiders, or flies, do not have organisms like pneumatic-pump, however, they can adsorb or detach a certain surface conveniently, with a remarkably small energy consumption. Essentially, adsorbing and detaching for animals, are two aspects of one unity. This application proposes a "micro-scale wall-climbing robot" prototype, which has six legs and omni-orientational capability. The adsorbing and detaching functions of micro-scale robot are to be studied together in a certain occasion.The research includes the following contents: 1) Analyzing the static/ dynamic characteristics of a piezo-actuator and optimizing the air-rectification efficiency of conical tube, these two aspects offer theoretical supports to design efficient piezo-valveless-micro-pump with multiple cavities; 2) Modeling the fluid dynamics of cupules with tiny gas channels and driven by piezo-micro-pump, analyzing the adsorption characteristics and the relative impact factors, these two are based on fluid network theory; 3) Studying on the motion control strategy for a robot to realize efficient adsorbing/detaching/moving functions, that is concerned with referencing to the moving features of small animals or insects with multi-legs.The realization of effective switches between two main states: moving and adsorbing, remarkably enhances the moving ability of micro-robot , thus, has important research values.
模仿小动物/昆虫在特定条件下的卓越运动功能,根据其生物机械原理研制从事恶劣环境作业的仿生机器人是近年来的研究热点之一。在自然界中,壁虎、蜘蛛、蚊蝇等小动物/昆虫并没有类似气泵的组织,却能耗费极小的能量自如地吸附或脱离被吸附面,说明对于生物来说,吸附与移动是一个有机的整体,二者很难割裂。因此,本申请提出一种基于压电无阀微泵吸盘的仿生微型六足爬壁机器人原型样机,将微型爬壁机器人的吸附与移动有机结合进行研究,包括:研究压电驱动器静/动态驱动特性和锥形管空气整流效率的优化方法,为设计高效多腔压电无阀微泵系统提供理论方法;基于流体网络理论建立微小气体通道的压电驱动微泵吸盘流体网络模型,对其附壁特性及其影响因素进行研究;同时模仿小动物/昆虫多足移动方式,研究机器人在壁面进行高效吸附/脱离/爬行的混合运动控制策略,使机器人实现移动和附壁两种模式之间自由切换,增强机器人的运动能力,具有重要研究意义。
本研究基于压电无阀微泵吸盘的微型仿生六足爬壁机器人,提出了基于旋量理论的柔性机构设计方法,结合压电薄膜微泵性能研究文献,根据此方法设计并优化柔性薄膜致动器。微泵薄膜的主要性能包括挠变特性和模态频率。提高柔性薄膜致动器位移输出和高频特性,改善微泵的流速和负压,进而提高微泵吸盘的响应速度和吸附力。提出基于欧拉-伯努利弹性梁模型的柔性机构力-位分析模型,探究薄膜负载下柔性薄膜致动器的静态与动态性能。利用ANSYS/FLUENT分析锥形管几何尺寸与整流效应关系,结合流体网络模型SPICE模拟微泵吸盘的吸附特性与响应,进一步探究驱动电源波形、频率与吸盘性能的影响。为了实现爬壁机器人高效吸附、脱离、爬行运动,提出六足机器人模块设计及步态规划,探究不同步态下机器人运动速度与运动稳定。设计柔性六足机器人,集成惯性传感器实现自主运动感知,根据六足机器人运动学模型提出标定机器人结构与运动算法,用于减少六足机器人运动过程中地形对吸盘的反作用力,提高六足机器人吸附机构与壁面的有效接触,提高运动轨迹精度。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于SSVEP 直接脑控机器人方向和速度研究
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
双吸离心泵压力脉动特性数值模拟及试验研究
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
仿生双足爬壁机器人的自主环境感知和路径规划
电磁驱动永磁吸附一体化微型爬壁机器人研究
基于压电材料剪切模式仿尾鳍摆动无阀药泵的研究
仿生爬壁滑翔机器人的构型、步态及滑翔控制方法研究