Multimode all-optical signal processing is a signal processing solution that is compatible with the emerging mode division multiplexing (MDM) transmission system at the node of the optical communication network. Multimode all-optical logic is one of the key technologies difficult to realize, and it is a big challenge to achieve a multimode logic operation function by a simple structured integrated device with a high intramode nonlinear conversion efficiency and low intermode crosstalk. Based on our previous research, we propose a multimode all-optical logic operation using a high-nonlinear silicon slot-waveguide. The overall nonlinearity of the slot-waveguide will be enhanced from two aspects including material and device structure. In specific, in order to obtain the optimal logic conversion, the nonlinearity will be improved by spin coating high-nonlinear polymer on the waveguide, and meanwhile, optimizing the mode field distribution, mode dispersion, mode multiplexing and demultiplexing coupling efficiency and nonlinear interaction distance. The improvement of the device nonlinearity will greatly reduce the input power consumption while increase the flexibility of the logic operation. The proposed high-nonlinear slot-waveguide enables various transmission modes, each mode independently performs optical high-speed logic AND and exclusive-OR (XOR) operations in parallel without any intermode crosstalk. According to our previous work on programmable logic array, this solution will further increase the system's computing capacity. With the help of researching on logic unit, we will focus on experimentally investigating some complex logic operation functions such as multimode half adder, half substractor and 1-to-8 demultiplexer.
多模全光信号处理是在光通信网络节点处,与新兴的模分复用传输系统相兼容的信号处理方案,而多模全光逻辑是其中的重点和难点技术,如何实现模内逻辑转换效率高、模间串扰小、结构简单且易于集成的多模全光逻辑运算是个挑战。本项目在前期研究基础之上,提出基于高非线性硅基狭缝波导实现多模全光逻辑运算的方案。拟通过旋涂高非线性聚合物材料、设计优化多模狭缝波导模场分布、模式色散、模式复用及解复用器耦合效率、非线性效应作用距离等方面,同时从材料和器件结构上增强器件整体的非线性效应,以获得最优逻辑转换效率,从而降低对输入信号光功率的要求,提高逻辑运算的灵活性。该方案提出的高非线性硅基狭缝波导可支持多种不同的传输模式,每个模式均可独立并行实现对光信号的高速逻辑与及异或运算,且无模间串扰。结合前期可编程逻辑阵列的工作,项目在研究单元器件基础上,将进一步研究实现多模半加器、半减器、1到8位解复用器等复杂逻辑运算功能。
硅基集成器件非线性特性的增强,是光网络节点处实现高速光信号处理及高性能光计算的重要保证。由于硅本身非线性克尔系数较低,目前硅波导器件仍存在非线性特性较弱的问题。本项目面向全光逻辑运算,提出了一种高非线性硅基聚合物狭缝波导(SOHSW),通过旋涂高非线性聚合物材料、设计优化狭缝波导模场分布、模式转换耦合效率、非线性效应作用距离等方面,同时从材料和器件结构上增强器件整体的非线性效应,以获得最优逻辑转换效率。主要工作包括以下几方面:1)高非线性硅基狭缝波导的设计优化。完成适用于SOHSW的模式转换设计,以及多模狭缝波导的复用器及解复用器设计;建立了完善的SOHSW理论模型,详细分析了不同狭缝宽度、狭缝深度、波导宽度、聚合物厚度等结构参数下,波导非线性系数的变化及对应四波混频(FWM)转换效率的情况。结合工艺条件,完成最佳全光逻辑运算转换效率的高非线性硅基狭缝波导设计。2)高非线性硅基狭缝波导的工艺制备及优化。成功制备出狭缝宽度为45nm的超窄SOHSW,且狭缝深度达到完全刻蚀。同时,完成了高非线聚合物MEH-PPV的制备与成膜工艺。确定了甲苯与MEH-PPV的最佳配比,对聚合物薄膜进行了折射率、非线性克尔系数及吸收系数的表征。实验表明,本项目提出的SOHSW的FWM转换效率,相对于未填充聚合物的狭缝波导以及普通条形波导,分别提高了12dB和5dB以上。其非线性系数可达14301/W/m,是未填充MEH-PPV时波导非线性系数的4倍,是普通条形波导的近6倍。器件的非线性特性增强显著。3)高速全光逻辑运算实验研究。基于SOHSW,实验实现了速率为40Gb/s的两输入全光标准逻辑单元,逻辑结果码流正确、眼图清晰张开,逻辑结果均达到无误码。该逻辑单元可构建半加器、半减器及1-to-4解复用器。同时,实验实现了40Gb/s的三输入异或及同或逻辑运算。对320Gb/s RZ信号的多模全光逻辑与门、1.28Tb/s 16PSK信号的十六进制多值逻辑加减法运算进行了探索性研究。本项目提出的高非线性硅基聚合物狭缝波导,在全光信号处理及高性能光计算中有较大应用潜力。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
特斯拉涡轮机运行性能研究综述
低损耗硅基狭缝混合等离激元波导光传输特性及其应用研究
基于波导多模干涉的全光正交变换器件
基于非线性孔硅波导的超快全光调制特性研究
基于狭缝波导的高效紧凑型硅基电光调制器