Grain boundary diffusion (GBD) is a newly developed process to enhance the coercivity of NdFeB magnets through distributing the diffusion medium along the grain boundary, which increases the anisotropy field of the grain surface or improves the intergranular structure. GBD process has advantages in improving the magnetic properties of NdFeB magnets while minimizing the use of rare earth (RE) elements. However, the current GBD processes exclusively use expensive RE based compounds or alloys as the diffusion sources. In this project, a new non-RE GBD process is proposed, which employs the compounds or alloys without RE as the diffusion source to further reduce the RE content in the magnets, and at the same time to enhance the coercivity, maintain the remanence, and enhance other properties such as corrosion resistance through modifying the grain boundary distribution and inter-grain phases. Based on our previous research, this project aims to further develop some new diffusion media and the low cost non-rare earth GBD process. The effects of non-RE GBD on the magnetic properties and other properties will be clarified, and the underlying physical and chemical mechanisms of the Non-RE GBD will also be illustrated. Based on the interface metallurgical behavior of the RE and non-RE elements, the variations of grain boundary characteristics will be understood. The composition, morphology, structure and basic physical properties of grain boundary phases in the NdFeB magnets and their effects on the coercivity and other properties will be investigated, and underlying mechanisms will be discussed. This project has overall important significance in resolving the fundamental problems associate with grain boundary modification, innovating the process of NdFeB magnets, and promoting the high efficient applications of the RE resources.
钕铁硼的晶界扩散工艺是利用扩散介质在晶界的分布来提高主相晶粒表面的各向异性场或优化晶界,从而提升矫顽力,在降低磁体稀土含量的同时强化磁性能。目前的晶界扩散工艺主要采用稀土或稀土化合物(合金)作为扩散介质。本项目提出一种非稀土化合物晶界扩散技术,以调整晶界相和改善晶界状态为出发点,采用不含稀土的化合物或合金作为扩散源,在进一步减少磁体稀土含量的同时提高矫顽力,保持剩磁,改善耐蚀性等其他性能。项目在前期研究基础上,开发低成本非稀土扩散介质和晶界扩散工艺;研究非稀土晶界扩散对磁性能和其他应用特性的影响,阐明扩散改善矫顽力的物理和化学机制;通过稀土和非稀土元素在晶界的化学冶金行为研究,理解不同晶界扩散前后晶界特性的变化;研究晶界相成分、结构、形貌和基本物性及其对材料矫顽力和应用特性的影响,解决晶界调控改善钕铁硼永磁性能的关键共性问题。项目对创新稀土永磁制备工艺,促进稀土资源高效利用具有重要意义。
晶界扩散技术作为钕铁硼永磁制备新技术,它通过将扩散源涂覆在磁体表面,利用热处理使扩散源沿晶界进入磁体内部,增加晶粒表面的各向异性场,调整晶界状态,提高磁体矫顽力,同时减少重稀土用量。一直以来,学者们都理所当然地认为晶界扩散源应该含有能提高主相内禀性能的稀土元素(RE),如Dy、Tb、Pr、Nd等。本项目提出一种非稀土晶界扩散技术,以调整晶界相和改善晶界状态为出发点,采用不含稀土的合金或化合物作为扩散源,在进一步减少钕铁硼磁体稀土含量的同时提高矫顽力。项目在前期研究基础上,理论研究了晶界扩散的各向异性行为和最佳晶界扩散方式,为晶界扩散工艺提供了指导;研究了非稀土元素在低熔点合金扩散源中的作用,开发了一系列稀土-非稀土合金扩散源,包括RE-Al、RE-Cu、RE-Al-Cu等;在此基础上,开发了一系列非稀土合金和化合物扩散源,包括Al、Cu、Zn、Al-Cu、Al-Cr、Cu-Zn、MgO、ZnO等;研究了扩散源形态和涂覆方式、扩散热处理对磁体组织和性能的影响,优化了晶界扩散工艺,显著提高了磁体的矫顽力;分析和理解了稀土和非稀土在晶界扩散过程中的扩散行为与界面冶金过程;厘清了晶界扩散前后晶界特性的变化以及钕铁硼永磁晶界相的成分、结构和性能特征对磁体性能的影响,理解了不同晶界相在反磁化过程中的作用及物理机制;基于理论和实验研究,提出了晶界扩散指导原则:除了提高晶粒各向异性场,任何改善晶界连续性、清洁性、光滑性的扩散源都可以提高NdFeB磁体的矫顽力,证实了项目申请书中的学术假设。此外,阐明了稀土和非稀土晶界扩散对钕铁硼永磁温度稳定性、耐腐蚀性、抗氧化性、电阻特性和力学性能等应用特性的影响,开发了新的集晶界扩散和防护涂层为一体的新工艺;同时开发了一系列低成本扩散基底材料。项目解决了钕铁硼晶界扩散关键共性问题,对创新稀土永磁制备工艺,降低材料成本、促进稀土资源高效利用具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
农超对接模式中利益分配问题研究
基于细粒度词表示的命名实体识别研究
基于二维材料的自旋-轨道矩研究进展
热变形钕铁硼磁体晶界扩散的各向异性研究
晶界纳米改性烧结钕铁硼永磁合金的强韧化机理研究
低稀土纳米晶热变形NdFeB永磁晶界改性及性能调控机制
压力诱导液相扩散调控热变形钕铁硼晶界相及其对矫顽力机制的影响