The targets of this program are to enhance the output power density, to improve the stability and to prolong the life of the micro tubular solid oxide fuel cell (MT-SOFC). Two scientific problems, which consist of weak compatibility between multi-layer inorganic membranes and low current-collecting efficiency, are intended to solve. A type of tri-layer micro tube, which consists of cermet current-collecting layer/anode functional layer/electrolyte membrane, is fabricated in one step through a phase-inversion co-spinning-sintering process. Thereafter the single cell is prepared by dip-coating and sintering of cathode on the top of the electrolyte membrane. The relationship between the composition of the cermet support layer and its current-collecting efficiency is studied. The mechanisms of the transferring, reaction, peeling off, or interfusion on the interfaces between the multi-layer membranes such as current-collecting layer, anode functional layer, electrolyte membrane and cathode layer are discovered. The valid processes for increasing the current-collecting efficiency, diminishing interface defects, decreasing interface impedance and improving the multilayer compatibility is explored. The results of this study will amplify the theoretical system of the current-collecting study and interface compatibility research of fuel cell area, simplify the preparation process of MT-SOFC, enhance the power density and stability of the cell. This work will be helpful to the research and development works of solid oxide fuel cell area theoretically and technologically.
本课题以提高微管式固体氧化物燃料电池(MT-SOFC)输出功率密度、改善其稳定性及使用寿命为总体研究目标,拟重点解决多层无机膜界面兼容性差、集流效率不高两个关键科学问题。课题采用相转化共纺丝-共烧结技术,一步制备金属陶瓷集流层/阳极功能层/致密电解质膜三层复合微管,浸渍阴极后形成MT-SOFC;研究集流层组成和结构对电流收集效率的影响,阐释成型-烧结过程中集流层、阳极功能层、电解质层及阴极层的界面扩散、反应、剥离或融合机理;探索提升集流效率、消减界面缺陷、降低界面阻抗、改善各层界面兼容性的有效途径。课题成果旨在丰富燃料电池集流方法及界面相容性理论研究体系,简化制备工艺、提高电池功率密度及稳定性,为高性能SOFC研发及产业化提供有效的理论依据及技术支撑。
微管SOFC因其具有体积功率密度高、启动和稳定时间短、便于密封和连接、易于组装等优点,在微小型便携电源和移动电源领域表现出强大的竞争力。本项目以提高微管式固体氧化物燃料电池(MT-SOFC)输出功率密度、改善其稳定性及使用寿命为总体研究目标,重点研究了阴极/电解质、阳极/电解质界面兼容性及集流层微结构等。课题采用相转化共纺丝-共烧结技术,一步制备出了具有使阳极及电解质一体化的单层微管、阳极/电解质、抗积碳阳极/阳极功能层、阴极/电解质、阴极/阴极功能层等双层中空纤维、金属陶瓷集流层/阳极功能层/致密电解质膜三层复合微管,并将其推广至氢渗透、氧渗透等领域;通过调节铸膜液的粘度调控了集流层微结构,利用多种表征方法研究了电极/电解质界面相互融合机制。具有一体化结构的微管SOFC可耐50个热循环,抗积碳阳极/阳极功能层支撑的微管SOFC在200h内运转良好;具有阴极功能层的微管SOFC输出功率较高。此课题公开发表SCI一区论文8篇,二区5篇,四区1篇,会议论文10篇,培养研究生10名,授权发明专利8项,获得天津市自然科学三等奖1项,山东省自然科学二等奖1项(已公示),山东理工大学科技进步一等奖1项。课题成果极大丰富了燃料电池集流及界面相容性理论研究体系,简化制备工艺、提高电池功率密度及稳定性,为高性能SOFC研发及产业化提供有效的理论依据,并为多孔陶瓷支撑的氧渗透膜、氢渗透膜提供了技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
基于Pickering 乳液的分子印迹技术
山核桃赤霉素氧化酶基因CcGA3ox 的克隆和功能分析
微管式中温固体氧化物燃料电池的制备与性能研究
微管式固体氧化物燃料电池阳极结构设计与性能研究
微管式固体氧化物燃料电池反应器中电催化及动力学特性
微管式固体氧化物燃料电池堆结构优化方法与3D打印制备研究