The terrestrial magnetopause is the main region in which the interaction between the solar wind and the magnetosphere take place. The solar wind plasma entries the magnetosphere mainly via a well-known mechanism named as 'magnetic reconnection'. The magnetic reconnection plays a crucial role in the coupling between the solar wind magnetosphere. The magnetic reconnection is one kind of rapid and massive transferring and relaxing process of energy and particles. The magnetic energy is transferred into dynamic energy heat energy of particles in short time during which the magnetic topology is changed. The magnetic reconnection serves as the main process in the coupling between the solar wind plasma and the magnetosphere, and in the process of energy and particle exchange. Thus it is regarded as an important factor that influences the space environment and space weather. We have devoted ourselves for several years in the study of the magnetic reconnection both in the magnetotail and the magnetopause, mainly focusing on the issues of magnetic structure, the micro-dynamics associated with the magnetic reconnection. We have published tens of papers in high-level journals including the J.Geophys.Res., J.Adv.Space Res., and so on, and also with several papers submitted to Geophys.Res.Lett., J.Geophys.Res. We are skilled at both satellite data processing and computer simulation. We have ample data set (obtained from Cluster, THEMIS, Geotail, DSP and so on) in good event for analysis and investigation on micro-dynamics associated with magnetic reconnection. In this study, we will focus on the hot issues of the dynamic of the magnetic reconnection in the dayside magnetopause and the high-latitude cusp regions. The magnetic topology of magnetic reconnection, the micro dynamic within the reconnection diffusion region, the wave and turbulence and the particle heating and acceleration during the occurrence of magnetic reconnection will be studied in detail by employing the data of magnetic field, electric field, particle flux and distribution of satellites such as the Cluster, Geotail, Themis, Polar. Magneto-hydrodynamic (MHD) and particle simulation is also used in our study. This study will make important progress on the following issues: 1) understanding the 3-dimentional structure of magnetic reconnection in the subsolar magnetopause and the high-latitude cusps; 2) whistler characteristics and guide-field of magnetic reconnection; 3) electrostatic solitary waves associated with magnetic reconnection in the dayside magnetopause and in the high-latitude cusp; 4) particle acceleration with respect to the magnetic reconnection in the high-latitude cusp and the particle subsiding in the auroral region; 5) space environment for the flying vehicles.
磁层顶是太阳风与磁层相互作用的主要区域,在这里太阳风等离子体主要通过磁重联进入磁层。磁场重联是一种"快速"的、大规模的能量转换和释放过程,可以在短时间内将磁能转化为粒子动能和热能,并且改变磁场的大尺度拓扑结构。我们通过多年研究,在磁场重联结构和相关粒子-波动等动力学过程有较好的研究成果,在JGR等国际国内权威期刊上发表十多篇文章,在卫星数据处理、计算机数值模拟等方面拥有丰富的资源和经验。 本项目着眼于国际上最热点的磁场重联物理机制的研究,侧重于利用卫星观测的磁场、电场、热离子、电子、等离子体等数据结合计算机数值模拟来分析磁层顶和极尖区中的磁场重联耗散区的微观结构、磁场重联过程中的等离子体波动的物理机制及其与粒子加速之间的关系,有望在磁层顶磁场重联的三维结构、哨声波驱动磁场重联、静电孤立波加速磁场重联能量耗散、波动-粒子相互作用、极区粒子加速和空间环境等领域取得重要进展。
磁层顶是太阳风与磁层相互作用的主要区域,在这里太阳风等离子体主要通过磁重联进入磁层。研究磁层顶的结构和波粒相互作用对极区粒子加速和空间环境探测具有重要作用。本项目利用国内外科学探测卫星数据研究了磁层顶磁场重联结构、与磁场重联相关的哨声波和静电孤立波的结构与演化、波动与粒子相互作用、极区静电孤立波与粒子加速等。这一系列的研究对进一步认识磁层顶的复杂的结构和波粒相互作用具有重要科学意义。本项目严格按照计划书实行,进展顺利,共发表SCI期刊收录论文7篇。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例
中国参与全球价值链的环境效应分析
资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验
日侧磁层顶磁重联期间极尖区电离层动力学研究
向阳面极尖区动力学特性与磁层扰动关系的研究
基于磁层卫星和地面观测与太阳日冕遥测的磁场重联研究
向阳面磁层顶磁通量传输事件三维结构和特性的多卫星观测研究