At present, harvesting the rich ocean energy has become one of the front and hotspot tasks in the international nanomaterials research field. It not only has both significant theoretic values and wide potential applications, but also is a certain challenge task. Triboelectric nanogenerator (TENG) has become one of the important technologies thanks to its unique advantages such as the higher energy-conversion efficiency and higher output voltages. In this work, a novel energy conversion approach is proposed for harvesting the underwater vibrational energy by exploring a novel flexible TENG. The weave technology has been proposed to be employed to fabricate the flexible TENG for harvesting underwater vibrational energy, and thus the designed TENG can be manufacture at a large scale which would significantly benefit to the future large-scale deployment On the one hand, the advanced surface treatment method will be used to modify the physical properties of the surface of the triboelectrical materials of the small balls to optimize the output performance and further investigate the electricity conversion mechanism under a dynamic condition which otherwise remained unexplored so far. On the other hand, the large-scale manufacturing and deployment will be implemented by the flexible weaving technology and tube in series method. Effects of physicochemical properties of the used triboelectric materials of the balls and tubes and the weaving ways on the output properties of the generated electricity will be investigated systematically to achieve the optimal parameters. The electricity generation mechanism will be studied in details and the effect of the dynamic relaxation processes will be considered for the first time in the proposed mechanism. The designed TENG will also be studied for the self-powered sound/ultrasonic sensors to detect the vibration signals underwater and an integrated wireless system will be also designed and studied for a wireless transmission of the sensor signals. This project is an original innovation, and paved a new way to harvest the underwater vibrational energy at a large scale.
收集海洋能是当前国际能源研究的前沿和热点之一,是具有重要科学意义和实际应用价值的研究课题,也是非常具有挑战性的工作。摩擦发电机以其独特的优势成为新型收集海洋能的重要技术之一。本项目将计划研究开发收集水下振动能的新型纳米摩擦发电机技术。拟采用可编织的新型技术手段实现收集水下振动能的柔性纳米摩擦发电机,使其具有可大规模制造和部署等优点。一方面采用先进的表面处理手段对使用的自由运动小球摩擦材料进行表面优化,进一步提高小球振动摩擦起电的输出特性,深入研究其发电机理;另一方面,采用包括柔性可编织技术以及管状串联两种编织结构实现可大面积制造与部署。系统研究优化小球、微管以及编织方式对发电机输出性能的影响,找出优化条件并深入研究发电机理。进一步根据摩擦发电机收集的电能信号,对水下振动能的振源状态进行无线监测,从而实现器件自驱动一体化系统。本项目的成果对收集和监测水下振动能具有重要的科学意义和应用前景。
收集海洋能是当前国际能源研究的前沿和热点之一,也是具有重要科学意义和实际应用价值的研究课题,更是非常具有挑战性的工作。新型的摩擦发电技术以其独特的优势成为新型收集海洋能的重要技术之一。按照项目计划,项目组研究开发了收集水下振动能的纳米摩擦发电(TENG)技术。项目以不同能源相互转化为依据,通过构建TENG的动态机电转换新模型,研究了该项目中以自由小球为摩擦材料的自由小球运动过程中动态机电转换新机理,并揭示了该过程的转化新本质。在理论模型的基础上,通过器件的自由小球的表面处理,提高了小球振动摩擦起电的输出特性,研究了处理后的小球在运动过程的发电机理,获得了提升摩擦层材料性能的关键因素;由于自由小球的数量、管内电极的宽度、器件的组合单元数、组合编织方法等器件参数对器件的输出性能起到至关重要的作用,所以项目对上述器件结构参数进行了系统的研究,获得了器件的输出性能与器件结构参数的构效关系,获得了器件的最佳性能输出参数,器件的功率密度可达到0.25W/cm2(项目计划实现参数是0.2W/cm2),转换效率为19%(项目计划是15%),这两个参数均超过了项目计划中的预期目标参数。根据上述研究,采用柔性可编织技术以及管状串联两种编织结构实现了器件的可大面积制造与部署的实验研究。根据摩擦发电机收集的电能信号与水下振动能的振源状态的关系,将获得的电信号对水下振动能的振源状态进行无线监测,实现了浅液面振源、150 m的远距离水下无线监测。上述的器件输出性能参数均已超过了该项目的所有预计目标参数。本项目对可编织技术收集水下振动能具有一定的创新性,研究成果收集水下能及其器件的开发和应用提供了一定的理论和实验依据。.项目的研究成果和培养人才方面也达到了并超过了预定目标,详细情况请参见结题报告正文。.总之,项目组经过四年的努力, 我们已经成功了完成项目预定的目标。请准许结题。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
基于二维材料的自旋-轨道矩研究进展
面向水波能收集的摩擦纳米发电机的性能优化
可各方向收集振动能量的含金属芯纳米压电纤维结构与自组装制备研究
压电-摩擦电复合式宽频带微型振动能量收集器机理与关键技术研究
基于摩擦纳米发电机的波浪能高效转换机理研究