Benefiting from their special characteristics and excellent properties of helical carbon fiber and carbon capsule, the preparation of the composites of helical carbon fiber and carbon capsule might promote academic progress in microwave absorbing novel materials, which exists great potential in application. The project mainly covers the study of growth mechanism of helical fibers and the controllable synthesis of carbon capsule on the surface of metal-oxide such as ZnO, TiO2, etc. The content and the direction of the research are briefly described as follows: at the very beginning, the coordination polymerization induced by nanocatalyst and the corresponding growth mechanism of helical fiber will be clarified, basing on the deep and systematical research of growing and dynamic process of helical fiber on the surface of metal-oxide. In addition to that, by systematically researching their catalytic reaction, formation condition and component of carbon capsule, their structural evolution and regulatory mechanism will be studied, which is the basis of the controllable preparation of helical carbon capsule composites. Besides, put forward the technological scheme through the deep research of multilevel structure and special properties. Most important, the regulatory mechanism of microwave absorbing materials, molding process and controllable method for the preparation of helical carbon capsule composites will be established by investigating the changes of fiber diameter and helical structure during the helical fiber’s growing process, and effects of carbon capsule structure, components and layers. This project combines experiment and theoretical calculation, aiming to finally obtain excellent microwave absorbing composites with hierarchical structure consisting of helical carbon fiber and carbon capsule.
利用螺旋碳纤维和碳胶囊的独特结构和优异性能,研制螺旋碳胶囊复合结构,对制备新型微波吸收材料具有重要的学术价值和良好的应用前景。本项目主要围绕金属氧化物(如ZnO,TiO2等)表面螺旋纤维生长机理和纳米碳胶囊的可控制备开展研究:通过对金属氧化物表面螺旋纤维的生长及其动力学过程进行深入和系统研究,阐明在各向异性纳米晶催化剂表面引发的配位聚合反应和螺旋纤维生长机理;通过对催化反应、碳胶囊生长条件和胶囊结构等系统研究,揭示碳胶囊生长过程中结构演变规律和调控机制;通过对螺旋纤维生长过程中纤维直径、螺旋结构变化以及碳胶囊结构、组份、层数等对复合结构微波吸收性能的影响研究,揭示其高性能化调控机制,建立螺旋碳胶囊复合结构的成型工艺和控制方法。本项目通过实验和理论计算相结合,最终获得微波吸收性能优良的螺旋碳胶囊复合结构。
针对螺旋碳胶囊这种新型微纳尺度功能材料,本项目主要从以下几方面展开研究:催化剂合成、催化机理研究、以及螺旋碳和碳胶囊可控制备研究。首先系统研究了Cu、Ni、Fe、Co等单金属催化剂的可控制备,并系统研究了单金属催化剂催化合成螺旋碳材料的生长机理,并成功应用于螺旋碳材料的可控制备。其次,针对多种氧化物(ZnO,TiO2, SnO2, BaFe12O19等)的不同晶面(100)、(110)、(111)等,进行了相关表面吸附、活化的模拟计算,同时,在实验上成功实现了碳源气体在金属氧化物表面的活化、碳均匀,并实现了碳胶囊纳米结构可控制备。最后,结合螺旋碳和碳胶囊的生长机理、可控制备技术,实现了高纯度的螺旋碳胶囊复合结构的可控制备,并对在螺旋纤维的长度、螺旋直径、纤维直径等参数进行有效调控,胶囊的结晶度、空心大小、壁厚进行优化。此外,在功能探索领域,如微波吸收、超级电容器等功能领域展现出优异特性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
钢筋混凝土带翼缘剪力墙破坏机理研究
聚离子液/贵金属纳米粒子复合微胶囊的可控制备及性能
中空结构碳/氮化碳复合微球的可控制备及其超声医学应用研究
碳材料纳米结构的可控制备和性能研究
“丝瓜瓤”状微纳结构硫碳复合正极材料的可控制备与构效关系研究