Rapid and accurate detection of multi-drug resistant tuberculosis bacterium is key issue to direct the correct use of anti-tuberculosis drug and the treatment of tuberculosis. Current methods for multi-drug resistance detection of tuberculosis bacterium were high cost, time consuming and easy contaminating. This project is designed to develope a new approach combining multi-channel, nanometer markers and biosensor techniques with high sensitivity and specificity for early rapid detection of multi-drug resistant gene of tuberculosis bacterium with low-cost and simple operation. We have screened multiple nano materials and synthesized high resolution and high sensitive nano-markers according to the characteristics of specific surface properties and catalytic activity of nano materials in our prior research. And high specificity and sensitivity gene probes of mycobacterium tuberculosis and drug resistance tuberculosis recognition interface were constructed. Based on our previous work, the objective of this project is to construct multi-channel probes recognition interface and study the DNA hybridization mechanism between probes in the interface and DNA examples groundwater. And establish a novel multi-channel nanoarray biosensor technique to detect the multi-drug resistant tuberculosis bacterium and provide evidences for clinical therapy.
多药耐药结核杆菌(MDR-TB)的快速、准确检测对指导正确使用抗结核药物,治疗多药耐药结核病至关重要。目前MDR-TB检测方法存在检测时间长、成本高、易污染等不足。本课题拟将纳米修饰技术、多通道技术、生物传感技术相结合,建立一种高灵敏、高特异、低成本、操作简便的多通道纳米生物传感新技术,用于结核杆菌多药耐药基因的早期、快速检测。前期工作已初步筛选纳米材料修饰物,利用纳米材料的比表面积特性与催化活性特征,制备高分辨、高灵敏的标记信号物,构建了高灵敏性、高特异性的结核杆菌及其耐药基因探针识别界面。本项目以前期工作为基础,旨在设计高特异性的结核杆菌多药耐药基因探针,构建多通道探针识别界面,研究界面分子探针与溶液相中DNA杂交的相互作用机理;制备多通道纳米生物传感器,建立快速检测结核杆菌多药耐药基因的新方法,为指导临床用药提供依据。
多药耐药结核杆菌(MDR-TB)的快速、准确检测对指导正确使用抗结核药物,治疗多药耐药结核病至关重要。目前MDR-TB检测方法存在检测时间长、成本高、易污染等不足。本课题将纳米修饰技术、多通道技术、生物传感技术相结合,建立了一种高灵敏、高特异、低成本、操作简便的多通道纳米生物传感新技术,用于结核杆菌多药耐药基因的早期、快速检测。制备了多孔纳米金、石墨烯、铂/纳米金复合材料等新型纳米材料及其修饰物,利用纳米材料的比表面积特性与催化活性特征,制备高分辨、高灵敏的标记信号物;同时通过设计高特异性的结核杆菌多药耐药基因探针,构建多通道探针识别界面;建立了高灵敏性、高特异性的结核杆菌及其耐药基因探针识别界面;研究了界面分子探针与样本DNA杂交的相互作用机理;建立快速检测结核杆菌及其多药耐药基因的新方法,为指导临床肺结核病人个体化用药提供科学依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
基于多模态信息特征融合的犯罪预测算法研究
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
PI3K-AKT-mTOR通路对骨肉瘤细胞顺铂耐药性的影响及其机制
纳米电化学生物传感器快速检测消化道肿瘤多药耐药基因的新方法研究
快速检测细菌耐药的超灵敏生物传感阵列新方法
基于WGM的多通道光微流体生物传感技术研究
用于肺癌早期检测的多通道硅纳米线FET阵列生物传感器