电力电容器局部放电模式识别研究

基本信息
批准号:59977011
项目类别:面上项目
资助金额:15.00
负责人:谈克雄
学科分类:
依托单位:清华大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:李幅祺,王忠东,高胜友,高凯,桂峻峰,王微乐,张蕾
关键词:
模式识别局部放电电力电容器
结项摘要

For improving the quality of power capacitor it is important to analyze the influence of material, structure and technology on discharge performance through pattern recognition of partial discharge (PD) within power capacitor. Usually the acoustic emissive signals of partial discharge are detected for specimen of large capacitance. Studying the time and frequency domain characteristics of ultrasonic signals caused by PD and studying the pattern recognition by using artificial neural network have also essential scientific significance for fault diagnosis theory.A computer-based acoustic emissive signal-detecting device is developed for measuring PD within power capacitors. The studying results show that the frequency band should be in the range of 20kHz ~ 500kHz and the total gain of amplifiers should be no less than 60dB.Five types of PD models were designed to represent typical phenomena of PD (gas cavity discharge, oil gap discharge, discharge along oil-paper surface, discharge caused by metal impurity, surface discharge of bushing) in power capacitors and a lot of acoustic signals were obtained through model experiments. The signal duration of gas cavity discharge is very short, about 1 ms, and the signal durations of other models are in the order of millisecond, so gas cavity discharge is easy to be differentiated from other discharge patterns. There are differences among the wave shapes and frequency spectra of acoustic signals caused by various model discharges, therefore the pattern discriminations could be performed according to the time domain and frequency domain characteristics of acoustic signals.The methods used to extract the feature vector from acoustic signals were studied. The investigated 9 kinds of feature extraction methods (time domain data suppression, frequency domain data suppression, auto-regression function, covariance method, power spectrum evaluation, time domain and frequency domain characteristics, time-frequency pattern, AR parameter model, united features method) process corresponding recognition effects for different PD patterns and the united features method, time domain and frequency domain characteristics method, AR parameter model and power spectrum evaluation method are better than the others. During PD pattern recognition the gas cavity discharge is firstly discriminated based on the time duration of acoustic signals. Then the combinational neural network (CNN) is used as a tool to gradually recognize the other four kinds of discharge patterns. The feature vectors extracted by different methods are used as the input vectors of the different sub-networks, it makes the CNN more efficiency and the recognition rates could be more than 98%.

识别电力电容器的局部放电模式,可分析材料、结构、工艺对放电特性的影响,对提高电容器质量和电力系统的运行可靠性具有重要意义。对大电容量试品常检测放电的超声信号,研究放电声信号的频谱;研究以声信号为基础的三维谱图,提取灰度图形矩特征,进而用神经网络识别放电模式;不仅具有重大经济效益,而且具有重大的故障诊断理论学术意义。.

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制

妊娠对雌性大鼠冷防御性肩胛间区棕色脂肪组织产热的影响及其机制

DOI:
发表时间:
2

LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响

LTNE条件下界面对流传热系数对部分填充多孔介质通道传热特性的影响

DOI:10.11949/0438-1157.20201662
发表时间:2021
3

双相不锈钢水下局部干法TIG焊接工艺

双相不锈钢水下局部干法TIG焊接工艺

DOI:10.3901/jme.2022.04.048
发表时间:2022
4

基于场致激光二次谐波产生原理的纳秒脉冲电场非介入测量方法研究

基于场致激光二次谐波产生原理的纳秒脉冲电场非介入测量方法研究

DOI:10.13334/j.0258-8013.pcsee.191745
发表时间:2020
5

A Fast Algorithm for Computing Dominance Classes

A Fast Algorithm for Computing Dominance Classes

DOI:
发表时间:2016

谈克雄的其他基金

相似国自然基金

1

组合电器中混合绝缘缺陷局部放电机理及模式识别研究

批准号:50377045
批准年份:2003
负责人:唐炬
学科分类:E0705
资助金额:16.00
项目类别:面上项目
2

采用UHF技术进行大型电力变压器局部放电故障的定位研究

批准号:50477040
批准年份:2004
负责人:李成榕
学科分类:E0705
资助金额:10.00
项目类别:面上项目
3

基于ZnO薄膜与FBG定位的倏逝场型电力设备局部放电在线检测关键技术研究

批准号:51677044
批准年份:2016
负责人:沈涛
学科分类:E0701
资助金额:64.00
项目类别:面上项目
4

局部放电超声阵列信号的提取策略研究

批准号:51307060
批准年份:2013
负责人:谢庆
学科分类:E0705
资助金额:24.00
项目类别:青年科学基金项目