Low-temperature non-thermal plasma technology is being widely used in modifying surface of two-dimensional such as silicon-based and graphene materials, biomedical, fuel reforming and environmental remediation fields. We have applied atmospheric dielectric barrier discharge (DBD) plasma to treat carbon-containing rare earth ion doped multi-component phosphor particulates and observed the distinct phenomena of decarburization. The scientific issues lie in the mechanisms of selective oxidation of species and defect microstructure formations as induced by plasma. For the specific carbon-containing, multi-component, rare-earth ion doped inorganic luminescent particulate systems, we propose to investigate the.evolution of carbon oxidation then removal, defect microstructure formation of the host as subjected by plasma active particles with the aids of the rare earth ion as a sensitive microstructure probe together with a high resolution spherical aberration TEM, to clarify the atomic-scale mechanisms of preferential oxidation of carbon radicals and controllable formation of defects in the hosts. The objective of this project is to achieve a general understanding of controllable plasma carbon oxidation and desired band gap adjustment of nano carbon materials through rare earth ion probing the interaction mechanisms between plasma and carbonaceous multi-component particulates, enriching materials preparation.science and providing the fundamental references for DBD or microwave induced plasma clean technology applied to treating various carbonaceous , carbon-containing including graphite,carbon dots,CNT, grapnene, graphide opto-electronic particulate materials .
低温非热等离子体技术以洁净高效特点,用于硅基、石墨烯等二维材料的表面改性以及生物医学、燃料转化、环境修复等重要领域。我们采用大气压介电阻挡放电(DBD)等离子处理含碳多组分稀土掺杂荧光粉材料,观察到了低温等离子体的显著氧化脱碳现象,等离子体诱导的选择氧化脱碳与缺陷结构是重要的基础科学问题。对碳热还原制备的含碳多组分稀土荧光颗粒体系,提出借助稀土离子光谱探针结合高分辨球差透射电镜,通过研究原子尺度上等离子体中的活性粒子作用于含碳多组分荧光颗粒,导致碳氧化脱除和基质缺陷结构的形成机制,揭示等离子体诱导碳被优先氧化、纳米碳材料的预期带隙调制和荧光颗粒材料缺陷结构的可控规律。本项目旨在通过荧光探针所揭示的等离子体与特定的碳质颗粒材料的相互作用机理,阐明低温等离子体处理碳质多组分颗粒材料的受控氧化及缺陷控制的一般规律,丰富材料制备科学内容,为DBD或微波等离子体应用于各类碳质或含碳光电颗粒材料的洁净制备技术提供基础参考。
低温等离子体技术具有洁净、高效特点,高能粒子作用于固体颗粒材料,诱发非平衡反应及产生各种缺陷结构。采用大气压介电阻挡放电(DBD)等离子体处理碳热还原氮化法制备的发射长波长红光的Sr2Si5N8:Eu2+、CaAlSiN3:Eu2+、SrAlSi4N7:Eu2+和Y3Si6N11:Ce3+微米尺度颗粒荧光材料,弄清了活性氧等离子体的选择性机制,发现大气压DBD等离子体对碳的氧化优先于稀土离子和氮化物基质,残碳的脱除率可达90%以上,从原子尺度考察了稀土离子的价态和基质缺陷结构的演化与性能的关系;类似地,采用DBD等离子体增强的机械化学装置和等离子体石英介质卧式旋转反应器装置,发现等离子体处理C3N4、Ti3C2Tx、Si电池颗粒材料所导致的缺陷,对电池的电化学性能具有显著提升。获得的低温等离子体技术对多组分荧光粉的受控优先氧化脱碳及缺陷控制的规律,可用于完善各类碳质或含碳颗粒颗粒材料的洁净处理工艺,扩展研究获得了低温等离子体手段用于C3N4、Ti3C2Tx、Si等电极颗粒材料的缺陷调控规律及增强效果,这些规律对低温等离子体技术应用于长波长生物光照荧光、电池颗粒材料的洁净制备加工方面有重要科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
感应不均匀介质的琼斯矩阵
高压工况对天然气滤芯性能影响的实验研究
空气电晕放电发展过程的特征发射光谱分析与放电识别
基于WSR反应器不同稀释介质条件下MILD燃烧分区特性研究
冲击电压下方形谐振环频率选择超材料蒙皮的沿面放电长度影响因素研究
宽禁带金属氧化物纳米晶的表面结构控制与缺陷诱导荧光
南海北部含碳颗粒类型与颗粒碳来源及颗粒有机碳输出的控制因素研究
含缺陷碳碳复合材料细观热结构分析与高温损毁机理探讨
脉冲放电击穿颗粒流的等离子体光谱诊断及飞灰含碳量测量方法