There are a lot of known results on permutation polynomials in one variable, but the known results on permutation.polynomials in several variables are much less. Usually, problems on permutation polynomials in several variables have some new differiculty, which disappears in the case of one variable. It is shown by some old results. From algebraic geometric point of view, a permutation polynomial in several variables corresponds to a.morphism of relative codimension larger than 0. This project is devoted to the research to two class of problems on permutation polynomials in several variables (over finite fields or residue.rings).
本项目研究多元置换多项式的几个基本问题。主要目标是解决Niederreiter公开问题的二元情形并部分推广到多元情形;得到模p^n的置换多项式对n的递归判别法,推广Nobauer关于S嗬嗷飞弦辉没欢嘞钍降幕径ɡ怼V没欢嘞钍接攵喔鍪Х种в辛担鞘Чぞ叩氖匝榈兀⑶以诿苈搿⒈嗦氲攘煊蛴性嚼丛蕉嗟挠τ谩enstra的工作以后,多元多项式将倍受重视。
{{i.achievement_title}}
数据更新时间:2023-05-31
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
面向工件表面缺陷的无监督域适应方法
有限域上的方程和置换多项式
关于ore多项式的算法和实现
密码学中置换多项式的构造问题研究
关于风险过程的若干问题