高性能导电聚苯胺/活化石墨烯复合物微球的构筑及电化学性能研究

基本信息
批准号:21274043
项目类别:面上项目
资助金额:82.00
负责人:关士友
学科分类:
依托单位:华东理工大学
批准年份:2012
结题年份:2016
起止时间:2013-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:李星玮,崔佳佳,韩广帅,王丽侠,周敏,闵书迪,刘婷婷,任大勇
关键词:
石墨烯导电性聚苯胺微球电化学性能
结项摘要

It is a worldwide problem that chemical energy storage materials and devices can not have both the high energy density and high power density. Aimed at the bottleneck problem of conductive polyaniline electrode materials with high theoretical specific capacity and low cost, and combined with the conductivity and energy storage mechanism of polyaniline, this application is starting from the basic scientific issues. Activation of graphene and the regulation of the pore structure parameters are introduced to build polyaniline/activated graphene complex microsphere electrode materials with a high electronic conductivity and a high ionic conductivity. Target electrode material can maximize the theoretical capacity of polyaniline to make up for electrically conductive defects of polyaniline electrode material in the charge/discharge start and end to achieve a high energy density and a high power density, and the cycle stability of the electrode material can be improved at the same time. In order to improve the conductivity of polyaniline, conductive networks based on activation of graphene are bulit in the conductive polyaniline microspheres. The pore structure parameters (porosity,pore size distribution,etc.)of the electrode material can be controlled by blending different size single-dispersed composite microspheres.The method to build a high energy density,a high power density and a long cycle life of conductive polyaniline/activation of graphene compound electrode material can be obtained by revealing the influence law of the pore structure parameters of the electrode material on the ionic conductivity, and exploring the matching principle of electrode materials and electrolyte materials.

高能量密度与高功率密度不能兼得是化学储能材料与器件研究的世界性难题。本申请针对理论比容量高、价格低廉的导电聚苯胺电极材料的瓶颈问题,结合导电聚苯胺的导电和储能机理,从基本科学问题入手,通过引入活化石墨烯和孔结构参数调控,构筑具有高电子导电性和高离子导电性的聚苯胺/活化石墨烯复合物微球电极材料。目的在于最大限度地发挥聚苯胺的理论容量,弥补聚苯胺电极材料在充/放电起点和终点电子导电性差的缺陷,实现高能量密度、高功率密度,并提高电极材料的循环稳定性。本研究通过在导电聚苯胺微球中构筑活化石墨烯导电网络以提高聚苯胺的导电性;通过共混不同粒径的单分散复合微球来调控电极材料的孔结构参数(孔隙率、孔径分布等);通过揭示电极材料的孔结构参数对电极材料离子电导的影响规律,探索电极材料与电解质材料的匹配原则;并获得高能量密度、高功率密度和长循环寿命导电聚苯胺/活化石墨烯复合物电极材料的构筑方法。

项目摘要

作为超级电容器的电极材料,导电聚苯胺具有理论比容量高、价格低廉等优势,但其电子电导性和离子电导率较差限制了聚苯胺的应用。本项目通过引入高电导的石墨烯和构筑有利于离子传输的微球结构,获得高能量密度和高功率密度的聚苯胺/石墨烯复合物电极材料。主要研究内容如下:.以石墨为原料,采用锂原电池或软包锂电池短路放电法制得锂-石墨层间化合物,并剥离锂-石墨层间化合物,成功制备石墨烯。探讨了石墨原料片层尺寸对所制得石墨烯形貌的影响规律。然而,该方法在产率和产物结构缺陷等方面有待于进一步改进。.采用细乳液聚合法,将氧化石墨烯超声分散在溶有苯胺单体的油性液滴中,加入过硫酸铵引发苯胺聚合,经过化学还原等步骤制得导电聚苯胺/石墨烯复合物微球。结果显示,所制得的导电聚苯胺/石墨烯复合物微球在电流密度为0.5 A g-1时比容量达495.9 F g-1,1000次循环后容量保留率为78.8%。.此外,还开展了采用喷雾干燥过程制备聚苯胺/石墨烯复合物微球系列实验。分别以氧化石墨烯、石墨烯或苯胺基石墨烯为原料,经苯胺单体原位氧化聚合制得片层状复合物,而后经喷雾干燥等过程制得聚苯胺/石墨烯复合物微球。研究了所获得的复合物微球的结构、形貌对其电化学性能影响。结果显示,复合物微球比容量最高达到596.2 F g–1,1500次循环后容量保留率为83.7%。.本项目通过电化学插入锂等过程制备石墨烯,研究了电化学方法及诸多电化学条件对石墨烯结构、性能及产率的影响。通过细乳液聚合法或喷雾干燥过程,可控制备了导电聚苯胺/石墨烯复合物微球,并研究了其结构、形貌与其性能之间的关系。这些研究为高品质石墨烯以及聚苯胺/石墨烯复合物电极材料的可控制备奠定了一定基础。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

基于一维TiO2纳米管阵列薄膜的β伏特效应研究

DOI:10.7498/aps.67.20171903
发表时间:2018
2

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
3

特斯拉涡轮机运行性能研究综述

特斯拉涡轮机运行性能研究综述

DOI:10.16507/j.issn.1006-6055.2021.09.006
发表时间:2021
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

氯盐环境下钢筋混凝土梁的黏结试验研究

氯盐环境下钢筋混凝土梁的黏结试验研究

DOI:10.3969/j.issn.1001-8360.2019.08.011
发表时间:2019

关士友的其他基金

批准号:20973060
批准年份:2009
资助金额:12.00
项目类别:面上项目

相似国自然基金

1

Pickering乳液模板法对石墨烯/聚苯胺空心微球的高效构筑和电化学性能调控研究

批准号:51873080
批准年份:2018
负责人:罗静
学科分类:E0310
资助金额:59.00
项目类别:面上项目
2

微纳结构石墨烯导电珠光颜料的构筑及“色-电”性能研究

批准号:51702347
批准年份:2017
负责人:王焱
学科分类:E0202
资助金额:25.00
项目类别:青年科学基金项目
3

氧化石墨烯/石墨烯叠层异质结构透明导电薄膜的构筑与性能

批准号:51572265
批准年份:2015
负责人:杜金红
学科分类:E0203
资助金额:64.00
项目类别:面上项目
4

基于氧化石墨烯层层自组装和模板法构筑石墨烯/无机纳米颗粒空心复合微球及其催化性能研究

批准号:21401015
批准年份:2014
负责人:肖巍
学科分类:B0502
资助金额:25.00
项目类别:青年科学基金项目