Ordered mesoporous metal oxide materials have been extensively investigated because of their varied potential applications in optical, electrical, magnetic, catalysis and sensor fields. The nanocasting strategy (hard-template method) has become the indispensable pathway to synthesize a broad range of ordered mesoporous metal oxide materials. However, the much lower mesoporous periodicity than their template and the lower crystallinity of the obtained ordered mesoporous metal oxide materials is still a challenge. This research project is based on our previously reported "solid/liquid conversion effect". The possible factors for the decomposition reactions of the metal precursors and the phase changes of the crystallization process will be discussed in detail. The target is to find the intrinsic mechanism of the "solid/liquid conversion effect", which controls the mesoporous periodicity morphology and crystallinity of the synthesized ordered mesoporous metal oxides in a wide range. Based on the mechanism research, the method to control the mesoporous periodicity and crystallinity in two-way will be obtained and a series of ordered mesoporous metal oxide materials with varied mesoporous periodicity and crystallinity will be successfully synthesized. After that, in order to study the relationship between the structure and the application of the ordered mesoporous metal oxides materials, the electriochemical performance of the material with high mesoporous periodicity and the catalytic performance of the material with low mesoporous periodicity (nanoscale material) will be tested. This project is expected to solve the two-way modulation problem for the mesoporous periodicity morphology and crystallinity of the ordered metal oxide materials. The effect rules between the morphology and crystallinity of the materials and their related applications will be mastered. Hence, the theoretical basis and method support for the two-way control synthesis of ordered mesoporous metal oxide materials using nanocating method will be provided.
有序介孔金属氧化物材料由于其在光、电、磁、催化及传感等领域的潜在应用前景而被广泛研究。纳米浇铸法是制备多种有序介孔金属氧化物材料的不可或缺的方法。然而,所制备材料的介孔有序性远低于其模板且结晶度偏低仍是一个亟待解决的问题。本项目基于申请人前期工作提出的"固/液相迁移效应",并根据材料分解反应的严密推理,将详细考察影响转晶过程中相态变化的可能因素,寻求导致形貌和结晶度可控的本质迁移机制,全面解析"固/液相迁移效应"的作用机理。并根据机理研究结果,掌握可定量双向调变材料的形貌及结晶度的方法,合成出一系列介孔有序性和结晶度依次变化的材料。并做相应的性能测试,包括对高介孔有序性材料的电化学性能评价和对低介孔有序性即纳米材料的催化性能测试。本项目将有望解决金属氧化物材料的介孔有序性和结晶度双向调变难题,掌握材料的形貌和结晶度变化对其应用性能的影响规律,从而为材料的可控合成提供理论依据和方法支持。
纳米浇铸法相对软模板方法是制备多种有序介孔金属氧化物材料的不可或缺的替代方法。然而,所制备材料的介孔有序性和结晶度可调变范围窄仍是一个亟待解决的问题。同时介孔金属氧化物材料的孔形貌结构与其应用性能间关系仍无法得到深入系统认识,因此设计制备形貌结构可调变的介孔金属氧化物并深入研究其影响机理及其对材料的相应电化学及催化性能影响具有重要意义。本项目基于纳米浇铸法制备介孔金属氧化物的分解反应原理,详细考察了影响介孔金属氧化物材料转晶过程中相态变化的一系列因素,深入分析了导致形貌和结晶度可控的本质迁移机制,全面解析出“固/液相迁移效应”的作用机理。并根据机理研究结果,掌握了可定量双向调变材料的形貌及结晶度的方法,合成出一系列介孔有序性和结晶度依次变化的介孔金属氧化物材料。并做相应的性能测试,包括对介孔氧化铟材料的气敏传感性能评价、对低介孔有序性即纳米四氧化三钴材料的催化性能测试、对介孔三氧化二铁材料的丙酮传感性能分析、对碳包覆纳米二氧化钼材料的锂离子电池性能调控等。获得了适当介孔有序性且高乙醇和丙酮气敏性能的介孔氧化铟材料、一氧化碳催化性能提升的纳米四氧化三钴材料、高丙酮选择性的低介孔有序性三氧化二铁材料、高放电容量和循环稳定的纳米二氧化钼锂离子电池负极材料等。本项目解决了金属氧化物材料的介孔有序性和结晶度双向调变难题,掌握了介孔金属氧化物材料的结晶度、介孔有序性、掺杂金属种类及含量等对其电化学及催化应用性能的影响规律,从而为材料的可控合成提供了理论依据和方法支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
上转换纳米材料在光动力疗法中的研究进展
铁酸锌的制备及光催化作用研究现状
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
多酸基硫化态催化剂的加氢脱硫和电解水析氢应用
有序介孔金属有机膦酸盐杂合材料的合成及性能研究
基于金属-有机配位化合物的有序介孔金属氧化物制备和性能研究
高结晶度介孔金属氧化物的制备及其功能性研究
介孔氧化物孔结构调控与其湿度传感性质的关系研究