Monolayer two-dimensional (2D) layered semiconductors with good mechanical strength, flexibility and piezoelectric properties, would be widely applied in self-driven electronic-skin devices. Nevertheless, impurities and defects from transfer process of 2D materials in fabrication of flexible electronic devices severely degrade the quality of materials and performance of devices. Moreover, the method for low-temperature controllable growth of large-scale, high quality monolayer 2D layered semiconductors on flexible substrates is still absence. In this project, the controllable method based on quasi-stable source and space-confined chemical vapor deposition for low-temperature controllable growth of large-scale monolayer molybdenum disulfide atomic piezocrystal on flexible substrates is proposed upon regulating the surface energy and chemical reactivity of flexible substrates, and its application in high-performance self-driven electronic-skin devices will be explored. The main contents of this project are to achieve low-temperature controllable growth of large-scale, uniform thickness and high quality monolayer molybdenum disulfide thin film on flexible substrates by regulating compositions and morphologies of surfaces of flexible substrates, kinetics and thermodynamics parameters, and to clarify regulatory mechanism of substrates and low-temperature growth mechanism of monolayer molybdenum disulfide thin film on flexible substrates. Further, the effect of electrode materials, contact structure, structure and orientation of grain boundary on piezoelectric performance will be explored, and an atomic scale model of microstructure of grain boundary and piezoelectric performance will be established. The performance of self-driven electronic-skin devices on monitoring various human physiological activities also will be studied. This work will lay the foundation for low-temperature controllable growth of 2D layered semiconductors on flexible substrates and their applications in flexible electronic devices.
单层二维层状半导体具有良好的机械强度、柔韧性和压电性能,在自驱动电子皮肤领域具有广泛应用前景。目前柔性电子器件制备过程中二维材料的转移引入大量杂质和缺陷,严重降低器件性能;柔性基底低温可控生长大面积高质量二维半导体的方法仍然匮乏。本项目基于对柔性基底表面能和反应活性的调控,提出近稳态源和限域空间结合的化学气相沉积法在柔性基底低温可控生长大面积单层二硫化钼原子压电晶体,并将其应用于高性能自驱动电子皮肤器件。主要研究内容是通过调控柔性基底表面成分和形貌、反应动力学和热力学参数,实现大面积、厚度均一、高质量单层二硫化钼的可控生长,阐明基底调控规律和低温生长机理;探索电极材料、接触结构、晶界结构、晶界取向分布对压电性能的影响规律,建立晶界和压电性能的原子尺度模型;考察自驱动电子皮肤器件对人体生理活动的监测性能。本项目的实施为柔性基底低温可控制备二维层状半导体及其在柔性电子器件中应用奠定基础。
基本上完成了题目为“柔性基底生长大面积单层二硫化钼及其在自驱动电子皮肤中应用研究”的项目研究,基本上达到了项目的预期目标。发展了大面积单层二硫化钼的制备方法,构筑了单层二硫化钼压电器件,揭示了晶界对单层二硫化钼压电性能的调控规律;探索了集成化单层二硫化钼电子皮肤器件的加工条件及优化工艺,在此基础上构筑了具有良好的灵敏度、稳定性和空间分辨率的电子皮肤器件,实现对人体不同部位运动的有效探测。本项目为二维压电材料集成化自驱动电子皮肤器件的设计、构筑及应用提供理论和技术支持。.依托本项目发表11篇SCI论文,出版学术著作1部,获批国家发明专利1项;获得2019年度黑龙江省高校科学技术奖一等奖(第三完成人)。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
内质网应激在抗肿瘤治疗中的作用及研究进展
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
基于资本驱动的新型互联网营造系统初探
弹性基底上二硫化钼的可控制备及其在可拉伸电子器件中的应用
强脉冲光烧结制备铜/基底复合结构探索及其高导高粘附力在柔性印刷电子中的应用研究
大面积石墨烯/二硫化钼异质结可控生长及在柔性太阳能电池中应用基础研究
单层二硫化钼纳米电子器件中的磁光调控输运性质研究