大规模超密集异构云无线接入网高效传输关键技术研究

基本信息
批准号:62001521
项目类别:青年科学基金项目
资助金额:8.00
负责人:谭方青
学科分类:
依托单位:中山大学
批准年份:2020
结题年份:2021
起止时间:2021-01-01 - 2021-12-31
项目状态: 已结题
项目参与者:
关键词:
低复杂度异构云无线接入网活跃用户检测资源分配信道估计
结项摘要

The centralization of baseband processing in large-scale and ultra-dense heterogeneous cloud radio access network (H-CRAN) can achieve the overall optimization of signal processing and radio resource, which leads to a significant improvement of transmission performance. However, massive access and large dimensional resource allocation increase the burden of network management. In order to satisfy the new requirement such as massive access, high spectrum efficiency and high energy efficiency in future wireless communication systems, this project studies the key techniques of low-complexity and high-efficient transmission in large-scale and ultra-dense H-CRAN. The main contents of the project include the following: (1) By excavating the sparsity of user activity and user signals, efficient algorithms for active user detection and channel estimation are developed based on deep learning. (2) Through considering the power consumption of the overall system, low complexity resource allocation methods based on first-order algorithm are designed. By adopting the frontier theory such as deep learning, compressed sensing and non-convex optimization, the research results of this project will significantly increase spectrum efficiency and energy efficiency of large-scale and ultra-dense H-CRAN.

大规模超密集异构云无线接入网(Heterogeneous Cloud Radio Access Network,H-CRAN)基带处理的集中化能够实现信号处理和无线资源的全局优化配置,实现网络传输能力的阶跃式提升。然而,海量终端接入和大维资源优化加重了网络管理负担。为了满足未来无线通信系统的海量接入、高谱效、高能效等新需求,本项目研究大规模超密集H-CRAN的低复杂度高效传输关键技术。主要内容包括:(1)挖掘用户活跃的稀疏性和用户信号的空间稀疏性,提出基于深度学习的高效活跃用户检测与信道估计方法;(2)综合考虑系统功耗,设计基于一阶算法的低复杂度资源分配方法。通过采用深度学习、压缩感知和非凸优化等前沿理论,本项目的研究成果将显著提高大规模超密集H-CRAN中的频谱效率和能量效率。

项目摘要

大规模超密集异构云无线接入网(Heterogeneous Cloud Radio Access Network,H-CRAN)基带处理的集中化能够实现信号处理和无线资源的全局优化配置,实现网络传输能力的阶跃式提升。为了满足未来无线通信系统的海量接入、高谱效、高能效等新需求,本项目研究大规模超密集H-CRAN的低复杂度高效传输关键技术。主要内容包括:1)研究大规模超密集H-CRAN中的活跃用户检测与信道估计算法,提出了一种基于稀疏界学习的自适应权重加权算法,仿真显示:相比传统算法,所提算法在稀疏度、压缩比和检测概率方面可以获得更好的性能。2)研究了大规模超密集H-CRAN中的低复杂度资源分配算法,提出了一种一阶算法及其加速算法,仿真显示:所提的一阶算法可以以非常低的计算复杂度获得与传统的内点法差不多的性能。本项目研究了大规模超密集H-CRAN中高效传输技术,为面向海量接入的无线接入网中高效资源分配提供了理论依据和技术参考,对H-CAN的实用化具有重要意义。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

跨社交网络用户对齐技术综述

跨社交网络用户对齐技术综述

DOI:10.12198/j.issn.1673 − 159X.3895
发表时间:2021
2

农超对接模式中利益分配问题研究

农超对接模式中利益分配问题研究

DOI:10.16517/j.cnki.cn12-1034/f.2015.03.030
发表时间:2015
3

黄河流域水资源利用时空演变特征及驱动要素

黄河流域水资源利用时空演变特征及驱动要素

DOI:10.18402/resci.2020.12.01
发表时间:2020
4

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
5

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019

谭方青的其他基金

相似国自然基金

1

密集异构云无线接入网中的协同传输理论及关键技术

批准号:61671072
批准年份:2016
负责人:吕铁军
学科分类:F0103
资助金额:58.00
项目类别:面上项目
2

超密集异构蜂窝网络中绿色无线携能通信关键技术研究

批准号:61601273
批准年份:2016
负责人:王亮
学科分类:F0104
资助金额:19.00
项目类别:青年科学基金项目
3

异构云无线接入网中面向无线携能通信的干扰管理技术研究

批准号:61801382
批准年份:2018
负责人:任远
学科分类:F0103
资助金额:23.50
项目类别:青年科学基金项目
4

绿色异构云无线接入网络中的波束成形技术研究

批准号:61801237
批准年份:2018
负责人:左加阔
学科分类:F0104
资助金额:19.00
项目类别:青年科学基金项目