In the background of implementing energy-saving and environment-friendly society, wearable intelligent garments are in future needs. As highly functional thermal-regulation garments, ventilation clothing has important values both in military and civil uses. Previous researches focused on the heat and mass transfer of the “Environment-Ventilation Clothing-Human body” system macroscopically, but the importance of the structure and the moving characteristics of the airflow under the clothing microclimate were not considered. Besides, the local ventilation and the local thermal comfort are different due the difference of the local body physiological construction.However, since forced ventilation is brought into the clothing, the structure characteristics of the airflow in the clothing small space which is between the skin and the fabric inner layer play an important role in clothing thermal comfort. This project will use three dimensional body canning technic and gas tracer method to measure and quantify the air gap thickness, volume, flow and velocity of the ventilated air. Based on this, more accurate boundary parameters will be provided to establish mathematical models of the airflow and heat flow under the clothing. The coupling mechanism of the airflow and heat flow, as well as the evaporation heat loss will be analyzed. Then the distribution characteristics of the airflow field and the temperature filed of each zone under the clothing will be revealed by CFD technic. Finally, the airflow and heat flow mathematic models will be validated and optimized through human ergonomic experiments. In the meanwhile, draft sensation will be introduced as evaluating index in the experiments. The unevenness of the local thermal comfort caused by ventilation will be analyzed as well. The project can thoroughly reveal the local thermal comfort mechanism of the ventilation clothing and provide important theories.
在倡导“资源节约型、环境友好型”背景下,可穿戴智能服装成为发展趋势。通风服作为高功能调温服装,无论军用还是民用都具有重要的应用价值。以往的研究关注于“环境-通风服-人体”三者之间的宏观热交互,忽略了衣下微环境空气结构和运动特征的重要性,加之人体局部生理构造不同,局部的通风、热舒适不同,而强制通风的引进,位于皮肤外侧和织物内侧狭小空间内空气的结构和运动特征对局部热舒适有重要的影响。本项目结合三维人体扫描法和示踪气体法,测量表征通风服衣下局部空气厚度、体积、流量与速度,在此基础上为衣下局部气流、热流运动传递数值模型的构建提供更合理的边界参数。通过分析衣下气流、热流、蒸发散热,借助CFD揭示衣下局部气流场、温度场的分布特征和规律。通过人因工效实验,验证优化构建的数值模型,并创新地将吹风感引入评价体系,解析局部热舒适不匀的机理,为深入阐明通风服对人体局部热舒适作用机理提供重要的理论依据。
在倡导“资源节约型、环境友好型”背景下,可穿戴智能服装成为发展趋势。通风服作为高功能调温服装,无论军用还是民用都具有重要的应用价值。以往的研究关注于“环境-通风服-人体”三者之间的宏观热交互,忽略了衣下微环境空气结构和运动特征的重要性,加之人体局部生理构造不同,局部的通风、热舒适不同,而强制通风的引进,位于皮肤外侧和织物内侧狭小空间内空气的结构和运动特征对局部热舒适有重要的影响。本项目围绕通风服衣下微环境气流、热流的传递以及对人体热舒适的影响机理开展了研究。项目通过三维人体扫描法获得了裸体假人和通风服的三维结构尺寸,通过向工程软件Geomagic Control对模型进行处理,获得了不同的通风速率下的通风服衣下微空间的结构尺寸,以及在模拟人体皮肤不同的汗液润湿状态下通风后衣下空间尺寸的变化。通过计算流体力学软件Flunt,对通风服衣下微环境的热交互进行了初步探索和模拟。通过大量的气候舱人体着装实验,获得了不同的热环境温度、通风强度、风扇排列组合设计下,人体局部皮肤温度、皮肤湿度、吹风感、热感觉、热舒适等热生理指标,研究了躯干皮肤温度、皮肤湿度、吹风感、热感觉、热舒适之间的关系,揭示了通风服对人体局部热舒适的作用机理。设计研发了不同的风扇排列组合的通风服、风扇和液体制冷管道组合的通风服,以及它们对人体局部热舒适的影响。..
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
人体热环境中衣下空间的构成性状与着装舒适性的客观测量及表征
井下高温环境人体局部冷刺激的热舒适性及个体防护机理研究
人体局部接触式热暴露对热舒适的影响研究
服装局部通风机制及其与热湿舒适性关系研究