The concurrent optimization of product configuration and its supplier combination administers to maintaining quality, reducing cost and shortening lead time. Uncertainty, existing in the complicated market environment, plays an important role during the new product development process. To deal with these problems, this project tries to integrate the product configuration and its supplier selection, and to fully take the consideration with multiple uncertain factors. Integrative optimization methodology for product configuration and supplier selection considering information uncertainties is deeply and systematically studied. Some typical product is taken as illustration for validating the effectiveness and efficiency of this proposed method. The uncertain factors that affect the actual configuration are analyzed, their modes and expressions are present, moreover, their influencing mechanism to integrative optimization of product configuration and supplier selection is revealed. A multiobjective integrated optimization model of product configuration and supplier selection is established while a hybrid algorithm to solve this model is put forward by improving the typical intelligent algorithms. In addition, the approach to configuration performance prediction under the small sample condition is proposed by using soft computing technology instead of experimental methods. Statistical analysis for product cost and lead time are shown using random simulation. This research has important theoretical and practical value, which is able to realize global optimization of product configuration and its supplier combination in the circumstance of multiple kinds of uncertainties. Furthermore, it’s helpful to build a methodology in optimizing decision-making for practical complex product development.
产品配置结构及其供应商组合的并行优化有助于保证新产品质量、降低开发成本和缩短交货期;复杂市场环境中广泛存在的多重不确定性对新产品开发的影响不可忽视。在此背景下,项目针对产品开发的实际过程,将产品配置与供应商选择结合起来,充分考虑多重不确定性因素,深入地研究基于不确定性的产品配置与供应商选择集成优化决策理论与方法,并以典型产品为例进行实证研究。包括:揭示不确定性的存在模式与表现形式及其对产品配置与供应商选择集成优化的影响机制,构建基于不确定性的产品配置与供应商选择多目标集成优化模型,设计能够有效求解不确定多目标优化问题的智能算法,建立小样本条件下配置产品性能预测模型与方法,研究基于随机模拟的产品总成本与交货期统计特性分析方法等。通过项目的实施能够实现不确定环境下产品配置结构及其供应商组合的全局并行优化,从而形成一套能解决实际产品开发的优化决策理论与技术体系,具有重要的理论意义和实用价值。
研究不确定环境下产品配置与供应商选择集成优化的基础理论与方法,其主要成果包括:基于区间数的多重不确定信息一致化表达策略、产品配置与供应商选择集成区间型多目标优化模型、区间改进型非支配遗传求解算法、产品配置性能预测方法、产品成本与出货期统计特性预估方法、产品配置与供应商选择集成优化计算系统等。将分别处于产品开发不同阶段的产品配置与供应商选择集成起来进行综合考虑,有助于实现产品设计方案和供应商组合的并行优化,进而得到全局最优或较优的产品物料清单和供应商组合。通过充分考虑产品配置与供应商选择优化决策过程中固有的各种不确定性,并建立相应的处理策略,能够保证研究成果在实际产品开发决策过程中的适用性和有效性。运用智能算法,挖掘并建立产品配置参数与关键性能指标之间的非线性映射关系,能够及时获知产品关键性能指标的取值,替代传统的试验方法,大大节约了研制成本和研制时间。采用随机模拟的方法,能够估算配置产品总成本和投放周期的统计规律信息,为制造企业制定相应市场策略提供决策支持。开发的产品配置与供应商选择集成优化计算系统基本实现项目成果的全过程,使得优化求解过程自动化和可视化,提升了项目成果推广应用的潜力。项目实现了多重不确定环境下产品配置结构及其供应商组合的全局并行优化,形成了一套能够解决实际复杂产品开发的优化决策理论与技术体系,为进一步深入研究产品优化设计方法提供了新思路和理论依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
C2M模式下智能产品供应商选择的不确定语言云决策方法研究
供应商参与下基于QFD的新产品开发规划的优化理论与方法
不确定环境下废旧产品拆解的Petri网建模及综合优化方法研究
随机环境下供应商管理库存系统的集成与协调