Development of strategy for ultrasensitive detection of viral nucleic acids is of great importance for disease diagnosis, therapy and related fundamental research. Carbon quantum dots (C-QDs) are widely used as fluorescent probes in biological analysis and cellular imaging not only because their luminescence is both strong and stable, but also because they are almost nontoxic and can be biofunctionalized easily. But it is required for C-QDs applied in viral nucleic acids detection in live cells with near infrared emission wavelength, high fluorescence and good water-solubility. Near-infrared (NIR) C-QDs have great potential application in viral nucleic acids sensing in live cells. In this project, structure-activity relationship of NIR C-QDs will be established and luminescent mechanism of NIR C-QDs will be explored by developing accurate synthesis methods and modulating optical property of NIR C-QDs. Through combining NIR C-QDs with super optical property and aryl ruthenium complexes with strong quenching ability, together with the good trapping and accumulation capacity of nucleic acid functionalized NIR C-QDs for target molecules, multi-functional nanobiosensor based on NIR C-QDs will be established. Ultratrace, high-resolution and ultrasensitive assays for model targets of hepatitis viral DNA, influenza viral DNA and AIDS viral DNA will be constructed with the assist of rolling circle amplification. With tunable emission wavelength of NIR C-QDs and different DNA sequence, such fluorescent nanobiosensor will be applied in multiplexed viral nucleic acids detection. The throughput and potential of detection will be improved greatly. It will make the present method for single molecule and single cell changed significantly. This research is beneficial for the rapid, high specific, ultrasensitive, real-time and in situ detection of biomarkers such as viral nucleic acids in the clinical application and related fundamental research. Meanwhile, it will provide important scientific basis on the thorough development and utilization of C-QDs nanomaterials.
发展病毒核酸超高灵敏识别方法,对于疾病诊断、治疗及相关基础研究意义重大。活细胞内病毒核酸研究要求碳量子点近红外、荧光强、水溶性好。本项目探索近红外碳量子点精准制备新方法,实现性能调控,建立构效关系,阐明发光机理。将较理想的近红外碳量子点与具备较强猝灭能力的芳基钌配合物结合,利用核酸俘获、富集特定靶标分子的优势,构建基于近红外碳量子点的多功能、靶向性纳米生物传感器。以肝炎、流感、艾滋病等病毒核酸序列为研究对象,结合滚环扩增技术,建立超痕量、高分辨、超高灵敏的病毒核酸检测新方法。通过调控近红外碳量子点发射波长和核酸序列,实现多个病毒核酸同时监测,提高检测通量和检测能力,使现有的单分子及单细胞分析检测技术发生根本性变化。此研究为临床及相关基础研究中病毒核酸等生物标志物的快速、高特异性、超高灵敏、实时原位检测提供一种新方法,而且在深入开发和利用碳量子点纳米生物材料等方面提供科学依据。
发展病毒核酸超高灵敏识别方法,对于疾病诊断、治疗及相关基础研究意义重大。活细胞内病毒核酸研究要求碳量子点近红外、荧光强、水溶性好。本项目探索近红外碳量子点精准制备新方法,实现性能调控,建立构效关系,阐明发光机制。将较理想的近红外碳量子点与具备较强猝灭能力的物质结合,利用核酸俘获、富集特定靶标分子的优势,构建基于近红外碳量子点的多功能、靶向性纳米生物传感器。以病毒核酸序列等生物靶标物质为研究对象,结合滚环扩增技术,建立超痕量、高分辨、超高灵敏的病毒核酸等生物靶标物质检测新方法。通过调控近红外碳量子点发射波长和猝灭物质,实现多个病毒核酸等生物靶标物质同时监测,提高检测通量和检测能力,使现有的单分子及单细胞分析检测技术发生根本性变化。此研究为临床及相关基础研究中病毒核酸等生物标志物的快速、高特异性、超高灵敏、实时原位检测提供一种新方法,而且在深入开发和利用碳量子点纳米生物材料等方面提供科学依据。该项目的相关研究工作共发表SCI论文15篇,其中二区以上论文12篇,获授权中国发明专利10件,获省级科研奖励4项。项目执行期间共培养硕士研究生6名,有3名硕士毕业生继续攻读博士学位。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
内点最大化与冗余点控制的小型无人机遥感图像配准
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
基于近红外量子点复合物的高灵敏度真菌毒素生物传感器
碳量子点基近红外光响应型纳米诊疗剂的设计合成及应用
基于金纳米和核酸适配体的近红外荧光生物传感器的研究
近红外碳量子点的制备及其在新型抗肿瘤给药系统中的应用