Quadratic systems arise extensively in many applications, such as control systems. In structural dynamic characteristics analysis of the dynamic system, Quadratic systems decoupling will be involved. It means to find coordinate transformations diagnalizing three coefficient matrices simultaneous, which is very harsh to accomplish. Although it had achieved some results that researching the problem based on Lancaster structure in numerical algebra, the implemention of structure preserving and isospectral characteristcs of relative algorithm remains to perfect further.. Focuing on the preserver problems researchees in quadratic system decoupling based on Lancaster structrue, this project is dedicated to improve and perfect the existing agorithm, and lay the foundation for it''s application in engineering practices. Firstly, effective numerical algorithms is researched to find decoupling transformations, along with its symmetric preserving characteristic. Decoupling transformations describe a kind of nonlinear of relationships between systems before and after decoupling, which is significant for engineering application. Secondly, the structure and spectral preserving problems are considered and descripted. Isospectrality is the key of decoupling, furthermore, Lancaster structure preserving is the key of isospectrality, thus, it is extremely important to reserch these two preserver problems. Finally, the existence and symetric characteristics of nonsingular solution of a kind of homogeneous Sylvester equation are researched.
二阶系统广泛产生于控制、振动等工程实际领域,在对其进行结构动力特性分析时,便会涉及到二阶系统的解耦问题,即寻找主坐标变换将三个系数矩阵同时对角化,其实现条件苛刻。虽然,数值代数领域基于Lancaster结构研究二阶系统解耦已取得一定成果,但相关算法的保结构和保谱等性质的实现仍需进一步完善提高。本项目针对基于Lancaster结构二阶系统解耦方法中的保持问题进行深入研究,以求进一步完善已有解耦算法,并为其在工程实践中应用奠定基础。首先,研究解耦变换的有效数值求解算法及解耦变换的保对称性。解耦变换描述了系统解耦前后的一种非线性关系,研究其求解及性质刻画对工程应用具有重要意义;其次,研究解耦变换的保结构和保谱特性的刻划与实现。要使解耦有意义就必须保谱,而要保谱就必须保结构,因此,研究解耦变换的这两个保持性质至关重要;最后,研究一类齐次Sylvester方程非奇异解的存在、求解算法及解的保对称性。
二阶系统解耦可以将一个多自由度系统转化成多个无关的单自由度子系统,它不仅为系统响应的计算提供有效方法,而且为系统的定量分析带来极大的便利,因此,研究二阶系统解耦具有重要意义。项目组针对基于Lancaster结构的二阶系统解耦方法中涉及到的保持问题进行了研究,进一步完善了现有算法,并将其应用到动载荷时域识别中。首先,利用Jordan三元组理论和标准三元组理论给出了保结构变换满足的一种形式,并利用适当的参数选取得到期望的解耦变换。其次,利用同谱解耦系统的构造来实现算法的保持性质,特别研究了当特征值亏损时,二阶系统的解耦判断条件和实解耦系统的构造。最后,提出一种基于二阶系统解耦的动载荷时域识别方法,通过理论推导建立数学模型,将基于Lancaster结构的二阶系统解耦方法应用到工程实际中,改进现有识别算法的不足。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
基于腔内级联变频的0.63μm波段多波长激光器
具有随机多跳时变时延的多航天器协同编队姿态一致性
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
基于解耦策略的结构损伤识别方法研究
基于变结构解耦的锁相交流调速系统的研究
多变量系统基于有限维建模方法的解耦与控制
二阶哈密尔顿系统及多体问题的周期解的研究