Conserved optical momentum and optical force in dielectric are an essential opital theory to investigate interaction between light and matter. However, by now, there are arguments on the correct formula of optical momentum and optical force in dielectric. These arguments mainly focus on the problems of their inconsistency with relativity and symmetry of spacial translation, and on the problems of ‘hidden’ momentum and energy in dielectric. The proposal will, with relativistic modification of the optical momentum and optical force density in dielectric, establish Lorentz-force-based optical momentum theory and Lagrange-action-based field theory to investigate the consistency with spacial translation symmetry, relative theory and Lorentz-force-based theory, thus giving the correct conserved optical momentum and optical force density. Experimentally, with investigation of the optical momentum exchanged between dielectric substrate and micro-/nano-fiber, the proposal will propose a novel optical force mechanism and a novel experimental method that can transfer the conserved optical momentum in dielectric into micro-/nano-fiber mechanical momentum, which will conquer the obstacle in direct measurement of conserved optical momentum in dielectric, allowing us to develop ultra-sensitive technique for measurement of weak force in femto-Newton and the technique of all-optical manipulation. Furthermore, using two-beam interferometry, the proposal will measure and verify the correct form of the optical force density in dielectric, and provide the resolution of the controversy about physical reality of "hidden" energy and "hidden" momentum.In summery,the fruit of the proposal will not only clarify the fundamental problem of optical momentum in dielectric, but also provide a more acurrate optical force theory and novel optical force mechanism for optical-force-based manipulation and application.
介质中守恒光动量、光力是光与物质相互作用的光学理论基础,但目前此守恒光动量与光力的正确形式仍不确定,主要问题是它们在理论上与相对论不自洽,在实验上无法被精确传感测量.本项目通过相对论修正的光子动量及光力,建立相对论自洽的洛伦兹力理论及拉格朗日场论,深入研究空间平移对称性、相对论与洛伦兹力理论的自洽性, 理论得到自洽正确的守恒光动量、光子动量及光力;研究微納光纤与介质衬底交换动量产生光力的新机制,提出将介质守恒光动量转换为微納光纤机械动量的测量验证守恒动量新方法,研究低成本、高灵敏的飞牛光力光纤传感测量技术及光力调控技术,解决光力、守恒动量难以精确测量的技术难题;通过双光束干涉法测量介质中的光力密度分布,验证正确的光力密度形式,解决"隐含"动量实在性的光学问题。研究成果将有助于澄清光动量基本光学问题,极大地开拓、推进及深化对光波动力学的认识,为相关领域提供精确的弱力测量技术及新的光调控机制.
介质中光动量一直存在争论,称A-M争论。解决此物理争论的重要依据即是实验判据,但目前存在无法测量光传输过程中的机械动量。在此背景下,项目研究了光动量形式与相对论、平移对称性的关联与内涵,提出了波导中总守恒动量的表达式,同时研发了一种基于纳米光纤与衬底近场耦合的纳米-光机系统及纳米位移、静态光力的精密检测技术,此技术位移检测极限达到3nm,相应标准偏差为3%,相应的光力检测极限到达5.2fN(5.2*10^-15牛顿)。此技术为实验验证守恒光动量、机械动量提供精密的技术手段,初步实验证明守恒光动量的正确性,也为在研究分子之间弱作用力与发展超高灵敏的位移、加速传感器提供有效的方案。此外,这纳米-光机系统能解决全光器件中光波带宽窄与控制光功率高的矛盾问题,实验证明此方案只需624μW控制光功率即可实现控制208nm带宽光波。此外项目还研究了自旋光动量,发现一种基于波矢变化PB相位引起的光子自旋霍尔新物理效应,这种效应解决当前自旋分裂距离与透过能量之间矛盾的问题,为进一步利用光子自旋霍尔效应开拓新的途径。项目已按计划实施,完成计划研究内容,并超额完成预期目标。发表论文共33篇,其中已标注的SCI论文32篇,其中有12篇IF>6,1篇论文IF>10,1篇发表在物理学著名期刊《Physical Review Letters》上,共被引用244次,其中他引194次。EI会议论文收录1篇。申请专利17项,授权发明专利2项,授权实用新型专利5项,实审新申请的发明专利10项。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
气载放射性碘采样测量方法研究进展
基于细粒度词表示的命名实体识别研究
透镜介质中单光子态光动量的实验研究
量子光频梳用于高灵敏时延测量的研究
超大尺度线结构光传感器及扫描测量中的关键技术研究
基于光生相敏的光纤双波长共光路高灵敏气体传感方法研究