Large-sized and high-precision gears, especially those whose diameters are larger than 3 m, are extremely important basic components for high-end equipment. In the environment of thermal-mechanical coupling, the special structure of large-sized gear cutting machine tool and working conditions have greater impact on workpiece precision. Currently, the evolution mechanism of machine tool’s precision is not well understood, and error compensation methods cannot meet the demand. This proposal aims at providing theoretical support for machine tool structure optimization and precision design of machine tool’s key components. This includes ascertains generating mechanism of large-sized gear cutting machine’s multi-field source error and mapping relationship pattern between machine tool’s multi-field source error and workpiece’s or cutting tool’s 24 pose error. And it provides operational-use theoretical support for machining high-precision gear, which reveals the related rules between gear surface quality and machining parameters, and proposes the optimal processing technology with controlled residual stress and gear surface error and studies high-precision dressing principle and new methods with multi-field coupling of hobbing or grinding force-strain-thermal-fluid. It explores the impact of machine tool’s energy consumption on precision of workpiece, and develops and implements the dynamic error compensation system, which builds the workpiece gear composite error prediction model based on machine tool multi-source error and proposes new method for error tracing and compensation. Integrating these research achievements and previous research results, this proposal provides basic theories and whole solutions for design, manufacture and analysis of large-sized numerical control gear cutting machine tool with independent intellectual property, thus reversing the passive situation that large-sized gear cutting machines are subject to foreign technological blockade and price monopoly.
直径3米以上大规格高精度齿轮是航母等高端装备极其重要的基础件。本项目针对力热耦合下大规格制齿机床特殊结构及工况对工件精度影响更加显著,机床精度演变机理不完全清楚,误差补偿方法不能满足需求的现状,探明力热诱导下大规格数控制齿机床多源误差的产生机理,建立制齿机床多源误差与工件/刀具24项位姿误差之间的关系模型,为机床结构优化及精度设计提供理论支撑;揭示齿面微观形貌与工艺参数的关联规律,提出齿面误差和残余应力可控的最优加工工艺,研究滚/磨削力-应变-热-流体等多场耦合下高精度修形原理及新方法,为大规格高精度制齿工艺优化提供理论支撑;探索加工系统能耗变化对制齿精度的影响规律,提出误差溯源与补偿新方法,研制误差补偿系统并实际应用验证。研究成果与前期研究基础集成,为拥有自主知识产权的大规格数控制齿机床的设计、制造及分析提供理论基础和整套解决方案,扭转大规格制齿机床受制于国外技术封锁和垄断的被动局面。
直径3米以上大规格齿轮是航母、大功率风力发电机等高端装备上的关键核心基础件,其精度的高低直接影响了我国高端装备的核心竞争力。本项目针对力热耦合下大规格制齿机床特殊结构及工况对工件精度影响更加显著,机床精度演变机理不完全清楚,误差补偿方法不能满足需求的现状,以大规格制齿机床为对象,建立了加工系统多源误差与工件/刀具位姿误差之间的映射关系模型;基于齿轮啮合原理、泰勒级数等理论,建立了多源误差对加工精度的映射模型。建立了齿面几何误差与机床多轴微分平动与微分转动之间的敏感矩阵模型,实现了机床关键几何误差溯源。提出了基于能量守恒原理的齿轮加工误差监测方法,以电机电流和温度等为输入,实现齿轮加工误差实时监控和预测。提出了大规格制齿机床的高精度在位测量方法,研制了基于在位测量的误差补偿及控制算法,完成了基于5轴联动的大型数控滚齿机典型产品Y31320CNC6、大型数控成形磨齿机典型产品SKMC3000/20的系统误差、渐变误差及修形几何误差的动态补偿系统,实现了基于等效虚拟轴的大规格滚齿机床的X、C轴补偿,研制了面向SINUMERIK 840D sl数控系统的可嵌入式实时补偿软件和系统,保证大规格齿轮滚齿、磨齿加工精度提升1级以上。基于成形磨齿加工砂轮宏微观模型及加工过程砂轮运动学模型,考虑齿面不同位置材料去除不均匀性,建立成形磨齿齿面微观形貌模型,提出了齿面微观形貌可控的最优加工工艺,保证成形磨齿加工后齿面粗糙度不大于0.4μm;考虑砂轮磨粒不同磨削状态及齿面法向方向变化引起的切屑体积等参数变化,建立了齿轮成形磨削加工切削力预测模型,建立了考虑齿轮表面残余应力和齿形总偏差的加工工艺参数优化模型,实现了加工参数的多目标协同优化,保证齿轮齿面残余应力达-600MPa。项目成果可为拥有自主知识产权的大规格数控制齿机床的设计、制造及分析提供理论基础和整套解决方案,研究成果还可推广应用于其他多种制齿装备,扭转高端齿轮机床受制于国外技术封锁和价格垄断的被动局面。
{{i.achievement_title}}
数据更新时间:2023-05-31
坚果破壳取仁与包装生产线控制系统设计
五轴联动机床几何误差一次装卡测量方法
基于生态系统服务流视角的生态补偿区域划分与标准核算--以石羊河流域为例
黏粒阳离子交换量估测模型的优化研究
公平视角下住房公积金储户补偿机制研究
大规格弧齿锥齿轮宽行端铣机理及加工干涉避免策略研究
五轴机床伺服特性动态匹配及联动精度智能控制
变构型诱导的可重构数控机床空间精度退变机理及控制方法研究
罗马控制数、彩虹控制数及相关问题的研究