As the most promising representative of the second generation of solar cells, Cu(In,Ga)Se2 (CIGS) thin film solar cells are moving from the laboratory to the industrialization stage. However, the production cost is still too high compared with traditional Si solar cells which mainly caused by its complex device structure, especially the cumbersome preparation process of buffer layer. It has been a key factor restricting the application and promotion of CIGS. In addition, the development of CIGS solar cells without buffer layer is of great significance for understanding the photoelectric conversion mechanism of CIGS. Based on the latest research progress in the world and the long-term research accumulation of our own group, this project aims to fabricate a high-efficiency CIGS solar cells without buffer layer by Si/Ge doped in absorption layer. To make the efficiency of CIGS solar cells without buffer layer reached the goal of 18%, three aspects of work including the optimization of the preparation process, the exploration of the microscopic mechanism of the absorption layer, and the simulation of the solar cells with new structure will be done. Through the research of this project, it is promising to obtain the world's most efficient CIGS solar cells without buffer layer, which will significantly simplify the traditional CIGS solar cells structure and reduce the production cost of the industry. In addition, it will also benefit for the basic research field to have a deeper understanding on the physical mechanism of CIGS solar cells.
铜铟镓硒(CIGS)薄膜太阳能电池作为第二代太阳能电池中最具前景的代表,正在由实验室向产业化阶段迈进,然而其复杂的器件结构尤其是缓冲层繁琐的制备工艺使其制造成本居高不下,成为制约其应用推广的关键因素。此外,无缓冲层CIGS电池的研制,对于理解CIGS电池工作机理具有重要意义。本项目基于国际上最新的研究进展以及自己课题组的长期积累,提出通过向吸收层中掺入Si/Ge等第二主族元素,尝试制备高效率无缓冲层的铜铟镓硒电池。项目围绕制备出18%以上效率的无缓冲层CIGS电池这一最终目的,从制备工艺的优化,吸收层微观机理的探究,电池器件的仿真模拟等三方面入手进行系统研究。通过本项目研究,将有希望获得世界上效率最高的无缓冲层CIGS电池,显著简化传统CIGS电池结构,降低产业界生产成本,此外,也将有利于科学界对CIGS等薄膜电池内部的物理机理有更深入认识。
铜铟镓硒薄膜(CIGS)太阳能电池作为第二代太阳能电池中最具前景的代表,在产业化的进程中遇到了一定困难。本项目提出通过采用向吸收层掺杂的方式,尝试制备高效率无缓冲层的铜铟镓硒电池,项目围绕制备出18%以上效率的无CdS缓冲层的CIGS电池这一目的,从制备工艺的优化,吸收层微观机理研究,电池器件的光学仿真模拟等方面入手进行了系统的研究。本项目执行过程中,首先优化了铜铟镓硒电池的基础工艺,获得了20%以上的铜铟镓硒电池效率;其次,通过采用双面快速沉积方法沉积Zn(O,S)替代了传统的CdS缓冲层获得16%以上的大面积(53 cm2)铜铟镓硒电池,柔性衬底上超过10%的光电转化效率(面积36 cm2),该方法具有工业化应用前景;此外,通过对吸收层掺Ge获得了18.3%的无缓冲层铜铟镓硒电池;在此过程中对各功能层及电池器件进行了系统的表征,圆满完成计划任务。作为本项目的延伸性内容,本项目将铜铟镓硒电池与钙钛矿电池结合制备出了效率达28.4%的铜铟镓硒钙钛矿叠层电池,该效率为同类电池世界最高效率。以上这些顶尖的太阳能电池性能为该领域的发展作出重要贡献,对如何使薄膜电池简化器件结构、降低成本、提高效率、发展大面积制备技术均提出了独特的思路。此外,该项目执行过程中发展出的一些真空设备方面的技术,正在与公司合作,积极推进相关技术的产业化,相关专利正在积极推进成果转化。
{{i.achievement_title}}
数据更新时间:2023-05-31
中温固体氧化物燃料电池复合阴极材料LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)的制备与电化学性质
脉冲直流溅射Zr薄膜的微结构和应力研究
岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制
基于两阶段TOPSIS-DEA模型的我国商业银行经营绩效评价
气体介质对气动声源发声特性的影响
低温生长柔性聚酰亚胺衬底铜铟镓硒薄膜材料及光伏器件研究
双梯度带隙铜铟镓硒光伏薄膜的光电化学沉积机理及其性能研究
Al/H共掺杂ZnO基透明导电窗口层的制备及其在陷光结构铜铟镓硒薄膜光伏电池中的应用
石墨烯/铜铟镓硒新型结构薄膜太阳电池探索