Aluminum (Al) is the primary factor limiting plant growth in acid soils, while pH is the original factor contributing to Al phytotoxicity. It is generally accepted that Al toxicity is much more severe at lower pH, whereas several reports argued that Al becomes much more toxic to plants at higher pH. However, the reason for these contrary opinions is still unknown. The present project will use different types of plants varying in Al tolerance to investigate the effects of pH on plant growth and Al accumulation under acid (pH 3.5-5.5) water and soil culture conditions. Monocotyledonous plants (wheat, maize and rice) and dicotyledonous plants (soybean, buckwheat, oil tea) will be used here. Based on the results of pH effects on Al toxicity of different types of plants, representative plants will be chosen to further explore the mechanisms of electrochemistry and molecular physiology responsible for the effects of pH on Al toxicity. Electrochemical mechanisms will be conducted on the differences in the forms and activities of various Al ions in growth solutions, root free space solutions and root surface among different pHs using chemical analyses, model calculation, NMR (Nuclear Magnetic Resonance), MS (Mass Spectrometry), and NMT (Non-invasive Micro-test Technique) techniques. Simultaneously, Al-tolerant red yeast will also be used to explore electrochemical mechanisms at cell level. The mechanisms of molecular physiology will be conducted on the differences in the organic acid secretion from roots, cell wall components, expression of Al tolerance-related genes and transcriptomics among different pHs under Al stress using HPLC, real-time PCR and RNA sequence. The objective of this project is to clarify the effects of pH on the Al toxicity of different plants and its underlying mechanisms.
铝毒是酸性土壤限制植物生长的主要因子,而低pH是导致铝毒发生的根本因子。一般认为“pH越低,铝毒越严重”,但不少证据表明“pH越高,铝毒越严重”。目前还不清楚这一矛盾的原因。本项目将选用不同植物种类(单子叶植物小麦、玉米、水稻和双子叶植物大豆、荞麦和油茶),采用水培和土培试验,在pH 3.5-5.5条件下比较pH对不同植物种类铝毒的影响差异。据此选出代表性植物和关键pH点,进而深入探究pH对植物铝毒影响的电化学和分子生理机制。电化学机制研究将结合模型计算、核磁共振、质谱和非损伤微测技术,分析生长溶液、根自由空间溶液、根表面铝的形态和活度以及根表面电势,并采用红酵母在细胞水平上阐释电化学机制。分子生理机制研究采用高效液相色谱、定量PCR和RNA测序,研究pH对铝胁迫下有机酸外排、细胞壁组分、耐铝基因表达和转录组学的影响。以期探明酸性条件下pH对不同植物种类铝毒的影响及其机制。
铝毒是酸性土壤中限制植物生长的主要因子,土壤pH是影响植物铝毒的关键因子。一般认为,土壤pH越低,土壤毒性铝离子浓度越高,植物铝毒越严重。然而,越来越多的证据表明,并不是pH越低、铝毒越严重,不同植物种类甚至同一植物不同品种间存在差异。为了系统阐释pH对不同植物种类铝毒的影响及其机制,本项目首先在一系列pH梯度下研究了pH对水稻和红酵母铝毒的影响及其机制,然后在关键pH点研究了pH对不同植物种类铝毒的影响,最后研究了pH影响水稻和玉米铝毒的分子生理机制。结果表明,水稻在pH 5.0时铝毒最严重,其次是pH 4.5和5.5,在pH 6.0和6.5几乎没有铝毒,这是因为根尖在pH 5.0积累了最多的铝,pH改变了溶液中铝形态,其中Al3+和AlOH2+是水稻铝毒的主要形态;在pH 3.1-4.2的生长介质中,pH越高,红酵母铝毒越严重,因为高pH下红酵母细胞表面羟基铝含量和负电性较高,这导致红酵母积累了更多带正电的铝离子;在pH4.0和5.0,发现pH变化对不同植物铝毒的影响不一样,高pH加重水稻铝毒,pH对大麦和小麦铝毒没有影响,高pH减轻高粱和玉米根系铝毒;酸性土壤上不同pH条件下不同耐铝水稻品种转录组学特征存在很大差异,发现细胞壁相关分子生理过程对酸性土壤上玉米生长至关重要;发现两种适应酸性硫酸盐土壤的野生植物资源野荸荠和五棱飘拂草;证明提高土壤pH可以提高铝敏感水稻根系生长但不能提高氮肥利用率;构建了不同pH条件下根表-根际溶液-土体界面铝的迁移-转化模式。总之,本项目系统解析了pH对植物和微生物铝毒的影响及其机制,改变了传统观点“高pH缓解铝毒”,找出了其关键机制,发表SCI收录论文6篇,中文论文1篇。研究成果对于酸性土壤改良利用、作物种类或品种管理、氮肥合理施用具有理论指导意义,对于酸性土壤地区农业可持续发展和生态环境保护具有实践价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel
黑河上游森林生态系统植物水分来源
不同改良措施对第四纪红壤酶活性的影响
家畜圈舍粪尿表层酸化对氨气排放的影响
2A66铝锂合金板材各向异性研究
酸性铝毒土壤上野生植物抗铝性解析
酸性土壤中不同形态氮(铵态氮/硝态氮)对植物铝毒害的影响及其机理
酸性土壤中铝的型态.铝毒及与其它离子的相互作用
麦类适应酸性铝毒红壤的营养生理遗传机制研究及应用