Alginate fiber is a degradable marine organism fiber material and has important application in the fields of textiles and garments, biomedicine, tissue engineering and multifunctional fiber. The project plans to develop high-strength alginate fiber and a fiber-improving preparation method by conducting research on aggregation structures and liquid crystal performance of alginate under different concentrations and through the combination with research on the rheological property of alginate and establishment of a gelatinization model. Important significance in widening the application range of alginate fiber and improving the application value of alginate fiber is achieved, and theoretical foundation is provided for design and manufacture of high-performance alginate fiber materials. A method and a mechanism for enhancing liquid crystal performance are explained through the research on aggregation states and liquid crystal performance of sodium alginate in solutions of different concentrations; a method for preparing high-concentration solutions (5 wt%-15 wt%) through the liquid crystal performance is researched; gelatinization mechanism models under different concentrations are established by researching the solution rheological property and the gelatinization mechanism of the solutions. The relation between the alga liquid crystal property and fiber performance, the relation between the rheological property and fiber performance and the relation between sinning conditions and fiber performance are established by researching the fluid dynamics in the wet-method spinning process, interaction between molecules in the coagulating bath process, the relation between the molecular structure and fiber performance and the relation between spinning forming and fiber performance, and the scientific theoretical guidance is provided for control over the morphological structures and phase behaviors in the process for preparing high-strength alginate fiber through spinning forming and spinning processing.
海藻纤维是一种可降解的海洋生物纤维材料,在纺织服装、生物医学、组织工程和多功能纤维领域有着重要应用。本项目拟进行海藻酸盐在不同浓度下的聚集态结构和液晶性能研究,结合海藻酸盐流变性能研究和凝胶化模型创立,开发高强度海藻纤维并改进纤维的制备方法。这对扩展海藻纤维应用范围,提高其应用价值具有重要意义,为高性能海藻纤维材料的设计制造提供了理论依据。 通过海藻酸钠在不同浓度溶液中的聚集态和液晶性能研究,阐明增强液晶性能方法和机理;研究利用液晶性能制备高浓度溶液(5wt%-15wt%)的方法;对此类溶液进行溶液流变性能和凝胶化机理的研究,建立不同浓度下的凝胶化机理模型。通过研究湿法纺丝过程中流体动力学、凝固浴过程中分子间的相互作用、分子结构与纺丝成型及纤维性能的关系,建立海藻液晶性能、流变学性质、纺丝条件与纤维性能的关系,为纺丝成型制备高强度海藻纤维过程中形态结构和相行为的控制及纺丝加工提供理论指导。
海藻纤维是一种可降解的海洋生物纤维材料,在纺织服装、生物医学、组织工程和多功能纤维领域有着重要应用。本项目探索了高浓度海藻酸钠溶液(HCSA)的快速溶解机制,结合HCSA流变行为研究和凝胶过程研究,通过研究湿法纺丝过程中分子结构与纺丝成型及纤维性能的关系,开发了纺丝液快速制备工艺、海藻纤维凝胶负牵伸技术、凝固浴处理控制和牵伸技术并研发应用了新装备。纤维力学性能得到了提高,这为纺丝成形制备高强度海藻纤维和开发纺丝加工技术提供理论指导,对扩展海藻纤维应用范围,提高其应用价值具有重要意义。同时项目还研究了海藻酸钠溶液的降解行为,为纺丝过程分子量和GM比例调控提供了有效参考;研发了耐盐耐洗涤剂性能海藻纤维制备工艺,实现了海藻纤维在纺织服装、阻燃工程领域的应用;此外,还扩展探索了基于海藻酸钠的多级孔碳气凝胶的制备及储能性能研究,为来源丰富可再生的海洋生物多糖在双电层超级电容器中应用提供了有效参考,应用前景广阔。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种基于多层设计空间缩减策略的近似高维优化方法
基于被动变阻尼装置高层结构风振控制效果对比分析
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
二叠纪末生物大灭绝后Skolithos遗迹化石的古环境意义:以豫西和尚沟组为例
出租车新运营模式下的LED广告精准投放策略
海藻酸盐水溶液的液晶行为研究及其液晶纺丝探索
纳米粒子/海藻酸盐纺丝原液的黏弹调控机理及其结构-流变-性能关系
纤维级海藻酸钠的制备、溶液性质及纺丝研究
海藻酸钠对碳纳米管的分散机理及碳纳米管纤维的液晶纺丝成型