The pressure oscillation tube refrigeration is a new type of gas expansion refrigeration method and it utilizes the movement of the pressure waves in the oscillation tube to separate the cold and the hot gas to achieve refrigeration. Due to the low efficiency of refrigeration and condensation liquid easy to re-evaporate, the pressure oscillation tube refrigeration is not widely used in the industrial field. In order to solve these problems, this project presentes a novel pressure oscillation tube refrigeration method in which the condensation separation is regarded as an intermediate process. The proposed method takes the pressure oscillation tube with double opening as the research object. It utilized the self-inertia of media in the process of intermittent ejection to achieve the depth expansion and provides preparation for the following condensation of the heavy components. To avoid the re-evaporation of the condensation liquid and achieve refrigeration with high efficiency, the proposed method optimizes the boundary conditions for the double opening tube and controls the kinetic trajectories of both the cryogenic condensed droplets and the entrained liquid droplets. Moreover, the proposed method utilizes the centrifugal rotation of pressure oscillation tube to perform the gas-liquid separation with high efficiency during the refrigeration process..The scientific significance are as follows: 1.The coupling mechanism between momentum exchange and energy transition is researched and the refrigeration theory of pressure oscillation tube is enriched; 2. The mechanism of phase change for multivariate mixed gas during the refrigeration process is explored on the basis of researching the cryogenic condensation process and the unsteady flow behavior inside the pressure oscillation tube. The results have certain guiding significance in the moisture gas processing field; 3.The state equation for natural gas including alcohol-water-hydrocarbon is studied to improve the calculation accuracy of the strong polar substances properties. The project proposes a novel gas expansion refrigeration technology which integrates refrigeration, gas-liquid separation and compression process and it is expected to be applied in the industrial field.
制冷效率低、凝液易再蒸发是限制压力振荡管制冷技术应用的两个关键因素。本项目提出一种将凝结分离作为中间过程的压力振荡管制冷方法。该方法以两端开口压力振荡管为研究对象,利用间歇射流时介质自身的惯性,实现深度膨胀,为重组分凝结析出创造条件;通过优化两端边界条件,调控进入管内的液体颗粒和低温凝结颗粒的运动轨迹,避免凝液再次蒸发,为实现高效制冷提供保障;利用振荡管离心旋转,实现制冷过程中气液两相高效分离。项目科学意义在于:1.研究动量与能量传递之间的耦合机理,丰富压力振荡管制冷理论;2.研究多元混合气体低温凝结过程以及带液运行时压力振荡管内非定常流动行为,探索多元混合气体相变机理,在含湿气体处理领域具有一定指导意义;3.研究含醇-水-烃三相的天然气状态方程,提高强极性物质特性的计算精度。项目将形成集制冷、凝结分离和压缩过程为一体的气体膨胀制冷技术,推动两端开口压力振荡管技术应用进程。
为了满足航空发动机研发需要,我国正在建设各类高空台试验系统,其中低温供气用气体膨胀制冷技术依赖进口。同样,大型天然气管道集输通常采用低温法进行处理,其中决定系统效率的气体膨胀制冷设备同样依赖进口。.压力振荡管制冷是一种新型气体膨胀制冷方法,与透平膨胀制冷方法相比,具有设备转速低、带液能力强等优点,逐渐成为研究热点。然而,高压进气往往含有可凝组分,压力振荡管制冷过程中将发生凝结和二次蒸发现象,影响其制冷性能。目前,由于缺乏压力振荡管内多元重组分的凝结和相态分离的相关研究,阻碍了该方法在天然气等含湿气体处理领域的应用。.本项目通过研究压力振荡管内波系运动行为,分析了压力振荡管深度膨胀的内在机理,获得了不同操作参数下膨胀深度的变化规律;引入可以描述极性介质特性的CPA状态方程,编制了多组分低温凝结蒸发数值模型,建立了两相压力振荡管实验测试平台,提高了多元混合气体相变行为的计算精度,改善了压力振荡管制冷装置结构设计精度,提高了抗两相流冲击能力;制定多级压力振荡管制冷方案,扩大了膨胀比适用范围,已获批国家发明专利,美国和欧盟专利正在审核中;研究了射流角度、高温挡板、变截面等结构对压力振荡管制冷性能的影响,获得了提高制冷效率的有效手段;形成了可靠的压力振荡管制冷方法,目前已应用于我国新疆采油二厂天然气脱水脱烃系统。项目研究成果丰富了新型压力振荡管制冷的理论基础,形成了适用于含湿气体的两相压力振荡管制冷方法,并在天然气处理领域成功应用,效果受到使用方认可。.项目发表科技论文共计11篇,其中SCI期刊论文5篇,EI期刊论文2篇,国际会议论文2篇。获批国际发明专利1项,PCT专利1项,获批中国发明专利6项,受理国际发明专利2项,受理中国发明专利2项。培养博士和硕士研究生共计7名,其中已毕业硕士研究生4名,在读博士1名,在读硕士2名。研究成果工业应用案例1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
粗颗粒土的静止土压力系数非线性分析与计算方法
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
低轨卫星通信信道分配策略
近 40 年米兰绿洲农用地变化及其生态承载力研究
表面活性剂减阻流体动量与能量传递耦合机理的研究
共容腔压力振荡管内波动特性及其热效应研究
振荡流热管内振荡相变传热机理及其与脉动外场之间耦合机制的研究
风电机组主传动链多维耦合振动机理及能量传递特性研究