In the increasingly fierce international competition environment, higher requirements have been put forward on the development of complex products. And under the new situation of the integration of the internet and the manufacturing industry in China, improving the utilization ratio of resources through cloud manufacturing is an effective way to enhance the development ability of complex products. However, there are also some difficulties in resource allocation and scheduling in cloud manufacturing environment, such as multi-objective, dynamism and uncertainty. To solve these difficulties, this project plans to go into the theory and methods of resource allocation and scheduling in cloud manufacturing environment. The main contents involve: the establishment of the cloud manufacturing service system for complex product development alliance based on cloud computing and SOA theory; the designment of resource allocation and scheduling strategy for the proposed service model system based on the theory of constraints; the construction of resource allocation and scheduling mechanism based on the theories of multi-objective intelligent optimization, unsteady queuing, and uncertainty artificial intelligence, which can compromise the expectations of different parties, response jamming events in real-time, and describe the uncertain factors; and finally to carry out application research on the basis of the above research. The expectation of this project are not only to achieve innovative results in the theory and method of cloud manufacturing resource allocation and scheduling, but also to promote the evolution of cloud manufacturing and the efficiency of complex product development.
目前,日益激烈的国际竞争环境对我国复杂产品研制能力提出了更高的要求。在互联网与制造业融合发展的新形势下,通过云制造提高资源利用率是提升我国复杂产品研制能力的有效途径。云制造环境下的资源配置与调度问题兼具多目标性、动态性和不确定性等难点,对建模与优化方法提出了新的挑战。本项目拟针对这些难点,深入研究面向复杂产品研制联盟的云制造资源配置与调度理论和方法。主要内容包括:运用云计算和SOA理论构建面向复杂产品研制联盟的云制造服务体系;基于约束理论设计该服务模式体系下的资源配置与调度策略;应用多目标智能优化、非稳态排队理论和不确定性人工智能等理论建立折中处理各方期望、实时响应干扰事件、描述不确定因素的资源配置与调度机制;最后在上述研究的基础上进行应用研究。通过项目的研究,期望在云制造资源配置与调度理论和方法方面取得创新性的成果,促进我国云制造发展,提高复杂产品研制效率。
课题以云制造环境下的资源高效利用为目标,对云制造资源配置与调度优化方法进行了研究,研究目标得到较好的实现。课题研究了云制造服务体系,构建了云制造本体树和本体描述元模型,设计了面向需求的可持续产品-服务系统工程特征识别方法;研究了云制造资源配置与调度策略,设计了基于匹配度、基于客户心理期望和基于可持续性等方法;研究了云制造资源配置的多方协调机制,设计了求解多目标整数多下层双层规划模型的新型粒子群-模拟退火混合算法;研究了云制造资源配置动态调度机制,设计了基于显性事件扰动的调度策略;研究了云制造资源配置模糊调度机制,设计了考虑客户满意度和决策者偏好的调度策略;研究了大数据技术在制造业中的应用,设计了基于深度学习的工业工作流动作识别方法。通过上述研究,为云制造资源配置与调度提供方法与策略,为我国制造业转型升级提供理论支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
面向云工作流安全的任务调度方法
F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
物联网中区块链技术的应用与挑战
一种改进的多目标正余弦优化算法
云制造资源优化调度理论与方法研究
面向大型复杂产品研制过程的决策问题模型研究
云制造环境下产品制造质量控制理论与方法研究
面向复杂产品协同开发过程的柔性资源智能调度研究