With the widespread use of multilayered composite materials in the underwater shell structures, the development of analysis models and computational methods that can reliably predict their vibration characteristics and sound radiation behavior become increasingly important both theoretically and strategically. Compared with traditional structures made of homogeneous isotropic materials, multilayered composite structures have many distinctive characteristics, such as anisotropy and heterogeneity. These characteristics make their dynamic characteristics rare complex due to the laminarity, inhomogeneity and the anisotropy of material. Therefore,it is difficult to develop reliable models to predict the vibration and acoustic responses for multilayered composite structures.Though several researches have been done about vibration and sound radiation analysis of underwater composite structures by equivalent-single- layer methods, however, these methods fail to consider the transverse shear and normal deformation and do not satisfy the continuity requirements of transverse stress in inter-lamination. Therefore, it is necessary to develop more accurate, efficient and reliable models and computational methods which are capable of universally dealing with multilayered structures with arbitrary lamination, complex shapes and general coupling conditions. The attempt of this study aims at developing a reliable model and computational method which is suitable for handling the underwater vibration and sound radiation from multilayered composite structures and their combinations with arbitrary lamination, complex shapes and general coupling conditions. With the model and method proposed, systematic analytical investigations and experimental studies will be launched to shed a light on the vibration and sound radiation characteristics of the underwater fluid-structure interaction system and reveal the vibro-acoustic coupling mechanism in viewpoint of analytical investigation and experimental study, respectively.
随着多层复合材料在水下潜航器壳体结构上的广泛使用,迫切需要准确可靠的建模求解方法来计算分析其振动行为与声辐射机理。与常规均质材料结构相比,由于组成材料的各向异性性、呈层性及非均匀性等特点,多层复合结构振动与声学问题的建模要复杂和困难得多。对于水下多层复合壳体结构振动与声辐射这样一种流固声耦合问题尚缺乏准确有效的建模求解方法,相关机理性研究还相对滞后。本课题旨在建立适用于任意厚度、任意铺层方式和一般耦合条件下多层复合壳体及其耦合结构的水下振动与声辐射分析模型和求解方法,结合理论分析和实验验证等手段探究结构几何尺寸、铺层参数、铺层方式、约束条件、横向剪切和伸缩变形、层间连续条件等因素对多层复合壳体及其耦合结构水下声振特性的影响,揭示系统声辐射机理及能量传递规律,为水下复合壳体结构的声学定量计算、优化及设计提供准确、可靠的理论分析手段及机理性数据参考。
与常规均质材料结构相比,由于组成材料的各向异性性、呈层性及非均匀性等特点,多层复合结构振动与声学问题的建模要复杂和困难得多。随着多层复合材料在水下潜航器壳体结构上的广泛使用,迫切需要准确可靠的建模求解方法来计算分析其振动行为与声辐射机理。对于水下多层复合壳体结构振动与声辐射这样一种流固声耦合问题尚缺乏准确有效的建模求解方法,相关机理性研究还相对滞后。本课题针对多层复合材料结构在水下领域应用中的定量声学设计背景需求,以多层复合壳体及其耦合结构为研究对象,建立了适用于任意厚度、任意铺层方式和一般耦合条件下多层复合壳体及其耦合结构的水下振动与声辐射分析模型和求解方法,结合理论分析和实验验证等手段探究了结构几何尺寸、铺层参数、铺层方式、约束条件、横向剪切和伸缩变形、层间连续条件等因素对多层复合壳体及其耦合结构水下声振特性的影响,揭示了系统声辐射机理及能量传递规律,为水下复合壳体结构的声学定量计算、优化及设计提供了准确、可靠的理论分析手段及机理性数据参考。.项目成果发表高水平论文16篇,申请发明专利4项,获得省部级自然科学奖1项,培养和正在培养研究生6人,指导本科毕业设计8人。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于改进LinkNet的寒旱区遥感图像河流识别方法
血管内皮细胞线粒体动力学相关功能与心血管疾病关系的研究进展
基于SSR 的西南地区野生菰资源 遗传多样性及遗传结构分析
铁路大跨度简支钢桁梁桥车-桥耦合振动研究
水下复杂壳体结构-轴系耦合系统声振特性及其机理研究
基于结构信息传感的壳体耦合系统声振特性及其声辐射有源控制研究
水下加肋圆柱壳体振动能量流和声辐射机理研究
湍流边界层激励下典型壳体结构的声辐射研究