Magnetostrictive iron-gallium alloy is a new class of structural magnetistrictive material which is developed by researchers at the Naval Surface Warfare Center in 2001. These alloys exhibit moderate magnetostriction under very low magnetic field, have very low hysteresis, high sensitivity to stress, and demonstrate high tensile strength in mechanical properties. All these factors demonstrate that Fe-Ga alloys have great promise as an engineering material for actuation and sensing applications. Quasi-static actuation characterization and sensing behavior have been performed by many researches, the results show that the impendance of Fe-Ga alloys would change when material undergoes changing cyclic stress, and a PI controller has to be applied to excitation coils to keep the magnetic field in Fe-Ga alloys constant throughout the stress cycle. Hence, many researchers took focus on actuation characterization of Fe-Ga alloys other than sensing behavior, especially dynamic sensing behavior. There are no reports on dynamic sensing behavior now. Dynamic nonlinear constitutive model and dynamic characterization of oriented polycrystalline Fe-Ga alloys based on inverse magnetostrictive effect is presented in this project. Firstly, dynamic sensing behavior will be performed based on quasi-static sensing behavior. A nonlinear constitutive coupling model of Fe-Ga alloy will be founded sencondly based on dynamic experiment and quasi-static sensing behavior. Finally, a structural dynamic model of Fe-Ga transducer will be present based on the structure of Fe-Ga transducer and nonliear constitutive coupling model of Fe-Ga alloy. The results of this research can provide support to optimization design and application of Fe-Ga devices. Therefore, this project has not only theoretical significance but also practical application prospect.
Fe-Ga合金是2001年被美国海军武器实验室发现的一种新型超磁致伸缩材料,该材料具有低磁场下高应变、滞后小、应力灵敏度高、机械性能好等优点,在驱动和传感领域均显示出良好的应用前景。目前研究者对Fe-Ga合金的性能测试均集中在准静态条件下致动特性与传感特性的测试上,研究表明,Fe-Ga合金在应力变化时阻抗发生变化,为保持恒定磁场,需要比例积分调节器控制激励电流大小来维持磁场恒定,因此和磁致伸缩特性相比,国内外对其逆磁致伸缩特性的研究较少。关于多晶Fe-Ga合金逆效应的动态特性测试,目前国内外尚未报道。因此本课题提出以取向多晶Fe-Ga合金逆效应动态特性测试为切入点,建立Fe-Ga合金特性本征非线性动态模型,进而建立以Fe-Ga合金为核心的器件系统动力学模型,为新型器件的优化设计和应用打基础。开展取向多晶Fe-Ga合金逆效应的动态特性与本征非线性动态模型研究具有重要理论意义及实际应用价值。
Fe-Ga 合金是2001 年被美国海军武器实验室发现的一种新型超磁致伸缩材料,该材料具有低磁场下高应变、滞后小、应力灵敏度高、机械性能好等优点,在驱动和传感领域均显示出良好的应用前景。目前研究者对Fe-Ga 合金的性能测试均集中在准静态条件下致动特性与传感特性的测试上,研究表明,Fe-Ga 合金在应力变化时阻抗发生变化,为保持恒定磁场,需要比例积分调节器控制激励电流大小来维持磁场恒定,因此和磁致伸缩特性相比,国内外对其逆磁致伸缩特性的研究较少。因此,结合国内外的研究现状,本课题的主要研究内容有:设计并制作了磁致伸缩材料磁特性测试系统,进行了Fe-Ga合金磁致伸缩效应和逆磁致伸缩效应的测试。在Fe-Ga合金准静态模型的基础上,考虑附加损耗和涡流损耗,建立Fe-Ga合金非线性动态滞后模型,该模型能够模拟Fe-Ga合金的静态和动态磁致伸缩特性。以Fe-Ga合金为核心元件,设计Fe-Ga合金液位传感器,进行Fe-Ga合金液位传感器的模型与实验研究。在本项目的支持下,共发表学术论文12篇,授权1项国家发明专利,2项实用新型专利,培养研究生5名。本课题中Fe-Ga合金的测试结果以及合金的非线性动态模型可以为新型Fe-Ga器件的优化设计和应用打基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
卫生系统韧性研究概况及其展望
钢筋混凝土带翼缘剪力墙破坏机理研究
吉林四平、榆树台地电场与长春台地磁场、分量应变的变化分析
2A66铝锂合金板材各向异性研究
固溶时效深冷复合处理对ZCuAl_(10)Fe_3Mn_2合金微观组织和热疲劳性能的影响
钕铁硼稀土合金动态本构方程与动态断裂研究
高聚物动态本构模型研究
镁合金热成形多晶体塑性-动态再结晶集成自洽计算模型
非晶合金形变剪切带的本征特性与微结构特征研究