Ultra-deep desulfurization of gasoline has drawn great concerns in both petroleum industry and scientific community due to its environmental concerns. The major challenges for ultra-deep desulfurization of gasoline include: (a) the competitive adsorption between the trace amount of organosulfur compounds and relatively large amount of aromatics, olefins and others in gasoline; (b) the decreased octane number of gasoline after desulfurization. To overcome the above barriers, we propose a novel approach of one-pot catalysis-assisted selective adsorption for ultra-deep desulfurization of gasoline using bi-functional supported metal oxides. The desulfurization mechanism includes: (a) the catalytic sites on supported metal oxides activate oxygen molecule in air, which oxidizes thiophenic organosulfur compounds to sulfoxides under ambient conditions; (b) the formed sulfoxides diffuse (spillover) to the highly-selective adsorption sites on supported metal oxides, and thus can be removed to achieve ultra-clean gasoline effectively without great loss of octane number. The proposed work will focus on (a) fundamentally understanding of the structure-performance relationships between the composition, textural properties, and surface chemistry of supported metal oxides and oxygen molecule activation and sulfoxide adsorption; constructing an adsorption desulfurization model based on synergy of catalytic sites and adsorption sites; (b) mechanistic design of bi-functional supported metal oxides with high desulfurization selectivity and low octane number loss. Develop a highly efficient separation process based on the new one-pot catalysis-assisted selective adsorption for ultra-deep desulfurization of gasoline using bi-functional supported metal oxides. The proposed work will open a new window for the practical applications of ultra-deep desulfurization for ultra-clean gasoline. Moreover, it will enrich the adsorption theories and generate new interdiciplinary adsorption-based science for gasoline desulfurization.
在温和条件下对汽油进行深度脱硫是炼油工业极具挑战的难题,针对吸附法应用于实际深度脱硫面临的汽油中其它组份的竞争吸附和辛烷值下降这两大关键问题,本项目提出研究一种基于双功能催化吸附材料的高选择性氧化吸附协同的汽油脱硫新机制,主要涉及:研制表面配置催化活性位和吸附活性位的双功能材料,其催化活性位可高选择性氧化噻吩硫为高极性硫砜,吸附活性位可高选择性吸附高极性的氧化产物硫砜,从而实现高选择性超深度脱硫获超低硫汽油(<1 ppmw-S)。项目在理论层面上,研究双功能催化吸附材料两类活性位的组成和表面物理化学对选择性氧化噻吩硫生成硫砜、对选择性吸附硫砜的影响规律;技术层面上,研制一类新型负载型双功能催化吸附材料,构建一种基于新材料的氧化-吸附协同作用机制,并建立高选择性的汽油深度脱硫模型和过程。项目研究成果将为超清洁汽油生产的工业化应用提供新思路,新理论和技术基础,具有良好的应用前景。
在温和条件下对汽油进行深度脱硫是炼油工业极具挑战的难题,针对吸附法应用于实际深度脱硫面临的汽油中其它组份的竞争吸附和辛烷值下降这两大关键问题,本项目提出研究一类基于系列双功能催化吸附材料 Ag2O@SBA-15、TiO2/SiO2、supported MoO3、Z-sorb 的高选择性氧化吸附协同的油品脱硫新机制,主要涉及:研制表面配置催化活性位和吸附活性位的双功能材料,其催化活性位可高选择性氧化噻吩硫为高极性硫砜,吸附活性位可高选择性吸附高极性的氧化产物硫砜,从而实现高选择性超深度脱硫获超低硫汽油。项目在理论层面上,研究双功能催化吸附材料两类活性位的组成和表面物理化学对选择性氧化噻吩硫生成硫砜、对选择性吸附硫砜的影响规律;技术层面上,研制一类新型负载型双功能催化吸附材料,构建一种基于新材料的氧化-吸附协同作用机制,并建立高选择性的汽油深度脱硫模型和过程。项目研究成果将为超清洁汽油生产的工业化应用提供新思路,新理论和技术基础,具有良好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
基于二维材料的自旋-轨道矩研究进展
桂林岩溶石山青冈群落植物功能性状的种间和种内变异研究
双吸离心泵压力脉动特性数值模拟及试验研究
利用高选择性脱硫吸附剂制备超清洁汽油
新型高选择性光催化吸附耦合技术及其燃油吸附脱硫机理
吸附—光催化双功能活性炭吸附材料的C/TiO_2协同作用机制
双助剂修饰铋基复合氧化物选择性光催化氧化FCC汽油深度脱硫