Exploration of various carbon nanomaterials with enhanced performance is critical for enriching the family of porous carbon materials as well as expanding their field of application significantly. In the present research, we plan to solve the bottlenecks encountered by graphene mesh through the combination of the advantages of fast ion diffusion and large effective specific surface area of the carbon nanomesh materials as the electrode materials for supercapacitors. We aim to develop a chemical etching and template method combined with the controllable chemical cutting strategy to prepare carbon nanomesh with tunable pore size distribution, pore density and size/thickness ratio. Moreover, the doping of carbon with other elements, the assembly of carbon nanomesh into macroscopic structure and the construction of micro/nano hierarchical structures will be also studied in detail. Furthermore, their capacitive properties will be fully measured by using a two-electrode system in commercial organic electrolyte. By studying the effect of synthesis conditions on the electrochemical performance, the relationship between capacitive behaviors and the microstructures, porous textures and composition of the obtained carbon nanomesh materials would be further understood. This project aims to establish a simple but effective method for the preparation of carbon nanomesh materials with controlled structures, which will pave the way for the application of porous carbon materials in the area of energy storage and environmental protection.
开发新型纳米碳材料对于丰富多孔碳材料家族和拓展碳材料的应用空间具有非常重要的意义。本课题围绕制备结构可控的碳纳米筛材料展开研究,拟结合碳纳米筛作为超级电容器电极材料在快速离子扩散和极高有效比表面积上的优势,解决石墨烯筛材料用于超级电容器存在的瓶颈问题。项目采用化学刻蚀法以及模板法与可控的化学裁剪技术相结合的途径制备出具有孔径分布、孔密度、尺寸/厚度比可调的碳纳米筛材料,进一步实现其掺杂、组装以及具有微/纳分级结构的构筑,并基于此将所得到的碳纳米筛材料用于有机电解液超级电容器。通过研究碳纳米筛材料的合成条件对电容性质的影响,进一步弄清微结构、孔道、组成和电化学性能之间的关系,为碳纳米筛材料在能量存储方面和环境保护等领域应用奠定理论和技术基础。
随着绿色能源和储能技术快速发展,设计及具有高工作电压、快速充放电、高比容量和长寿命碳基超级电容器成为了当前电化学储能研究的热点之一。目前活性炭以其低廉的价格,极高的比表面积等优势占据了商业化超级电容器的绝大部分市场,但是传统活性炭材料缺乏快速的离子输运通道已无法满足需求。针对此,本项目通过以廉价生物质、化工副产品等为前驱体,利用化学活化法和模板法构建出具有高比表面积、丰富中孔以及平面上快速离子扩散通道的二维筛状多孔碳材料。在充分利用离子液体和有机电解液较宽的工作电压的基础上,通过组装碳-碳对称超级电容器,实现了器件高容量、大功率、长循环寿命等性能的集成,从而获得和水系电解液具有接近的功率密度(30000~60000W/kg)和循环稳定性(10000圈电容保持率为90%以上)而能量密度(50-100 Wh/kg)却数倍高于常规酸或碱性电解液。详细研究了制备工艺对材料的比表面积和孔径分布的影响规律,探索材料的孔结构参数对比容量和倍率性能的影响规律,初步阐明了孔道结构、组成、电化学性能和合成条件之间的内在联系。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
涡度相关技术及其在陆地生态系统通量研究中的应用
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
中国参与全球价值链的环境效应分析
疏勒河源高寒草甸土壤微生物生物量碳氮变化特征
超级电容器复合电极材料的设计合成及性能研究
新型纳米硅碳复合负极材料的设计合成、组装及应用研究
高曲率碳纳米洋葱的可控合成及其超级电容器性能研究
高容量超级电容器用芴基氮掺杂碳纳米网电极材料的研究