Molecularly imprinted polymer (MIP) is a popular and inexpensive recognition receptor for the electrochemical determination of environmental hormone, which is a hot research topic for the interdisciplines, such as analytical science, organic synthesis and materials chemistry, etc. However, the MIP prepared by traditional polymerization still presents critical issues, such as many recognition sites are buried in polymeric matrix, and recognition presents slow mass transfer and low binding capacity, etc., which hinders the electrochemical response signal transmission and makes the sensitivity and selectivity of electrochemical sensor decrease. Based on these issues, we will employ ionic liquid(IL) as functional monomer and cross-linker to prepare the core-shell surface molecularly imprinted polymer with nanoporous shell, which would evidently improve the mass transfer rate and imprinting surface area. For this project, we will ceremoniously discuss the formation mechanism of pore for MIP shell caused by IIs, and simplify preparation steps of MIP, and improve comprehensive properties of MIP. After that, we will adopt MIP as a recognition receptor and combine three-dimensional nanomaterials to construct a series of the MIPs based electrochemical sensors for environmental hormones. In addition, we will collect samples from the main water sources and waste water, as well as their ambient environment in Honghe. At the same time, we will emphatically care the residual of heavy metal ions and other environmental hormone for this project. To carry out this project, it has academic significance and important practical value for the application of analytical science, organic synthesis, materials chemistry and their related applications.
分子印迹聚合物(MIP)是电化学检测环境激素的廉价而高效的识别元件,是分析科学、有机合成和材料科学等交叉领域中具有理论及应用价值的前沿热点课题。然而,传统MIP仍存在大量有效印迹位点被包埋和传质阻力过大等关键性问题,降低了传感器的灵敏度和选择性。本课题拟以离子液体(IL)同时为交联剂和功能单体的策略,以期望获得具有纳米多孔MIP壳层的核-壳纳米载体,达到显著提高传质速率和有效印迹面积的目的。重点探讨IL的致孔效应,揭示其对MIP性能的影响规律及机理;同时,利用IL特性简化MIP的制备步骤和综合提高MIP的性能。另外,拟以MIP为识别元件,并结合三维多孔的纳米材料构建高灵敏和高选择的电化学传感器,用于红河州内重要的水源地和有色金属工业区及周围的重金属离子等环境激素的痕量分析,有望形成区域特色的研究内容。本课题的开展,将对有机合成、材料化学和分析科学等交叉领域的研究具有重要的科学意义。
电化学传感器具有设备简单、成本低和易操作等特点,其核心是传感器的界面的构建,利用纳米材料修饰电极构建新型传感界面已经成为电化学感器研究领域重要策略,获得高灵敏度和选择性的分析方法。项目按照计划,利用功能化的石墨烯(多孔石墨烯、多孔氮掺杂、羧基化石墨等)其与多孔Pt-Pd纳米颗粒、Au等金属纳米颗和聚合物等制备了一系列的修饰电极的纳米复合材料。重点采用了原位制备的方法获得了多孔石墨烯-二硫化钼、Au纳米颗粒-聚合对氨基苯甲酸-石墨烯、Au纳米颗粒-聚合多巴胺-石墨烯等复合纳米材料。利用上述修饰材料,分别构建了构建了高灵敏度检测甲砜霉素和氟苯尼考的电化学分子印迹传感器,研制了一系列检测黄曲霉霉素B1的电化学生物传感器和构建了大黄酚、多巴胺和抗坏血酸等有机小分子的电化学传感器。另外,采用电化学方法制备了新型的固相微萃取头,利用了新型离子液体和碳纳米材料来提高涂层的萃取容量和机械稳定性等综合性能,构建高灵敏度检测食品抗氧化剂和农药残留的方法。上述所构建的分析方法具有快速、可靠和灵敏的特点,能够用于实际样品的检测分析,结果令人满意。因此,项目的实施对纳米材料的制备、电化学分子印迹传感器或生物传器的构建和固相微萃取头的设计等相关的分析科学和材料科学等领域的研究具有重要的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
特斯拉涡轮机运行性能研究综述
中国参与全球价值链的环境效应分析
居住环境多维剥夺的地理识别及类型划分——以郑州主城区为例
纳米材料增敏的高性能分子印迹膜电化学传感器的研制及其在环境激素检测中的应用
基于离子液体的水相印迹材料构建及其对痕量抗生素类PPCPs的识别应用
环境中痕量PEDCs印迹固相萃取-印迹电化学传感检测联用系统研究及应用
离子印迹聚合物和离子液体在核素富集分离中的应用