不同粘性的N-S方程的有限元迭代算法

基本信息
批准号:11271298
项目类别:面上项目
资助金额:60.00
负责人:何银年
学科分类:
依托单位:西安交通大学
批准年份:2012
结题年份:2016
起止时间:2013-01-01 - 2016-12-31
项目状态: 已结题
项目参与者:贾惠莲,苏剑,郑海标,朱立平,孙海燕
关键词:
NS方程两水平算法有限元迭代算法误差估计
结项摘要

We will design some different fast iterative techniques to solve the steady 2D and 3D Navier-Stokes equations and the nonstationary 2D and 3D Navier-Stokes equations. The one-level Oseen iterative finite element method based on a fine mesh with mesh size h is designed to solve numerically the steady 2D/3D Navier-Stokes equations for small viscosity such that a weak uniqueness condition.holds. The uniform stability and convergence of these methods with respect to parameter and mesh sizes h and H and iterative times m are provided. Two-level iterative finite element methods are designed to solve numerically the steady 2D/3D Navier-Stokes equations for a large viscosity such that a strong uniqueness condition holds. The two-level iterative finite element methods are motivated by applying the Stokes, Newton and Oseen iterations of m times based on the different viscosities on a coarse mesh with mesh size H and computing the Stokes, Newton and Oseen correction of one time on a fine grid with mesh size h<< H. The uniform stability and convergence of these methods with respect to the physical parameter and mesh sizes h and H and iterative times m are provided. If h and H satisfy some suitable.relations, two-level finite element methods can save much more computational time..Furthermore, we will study the different iterative methods to solve the nonstationary 2D and 3D Navier-Stokes equations for the different viscouties.For the 3D Navier-Stokes equations, we will use the suitable parallel techniques to overcome some difficulties encounted in numerical computations. We will consider the efficiencies of numerical computation and the stability, convergence of the numerical schemes. The reseach is useful to the nonlinear sciences and applications of the computational fluids in engineering techniques, part research results will arrive at the first-level standard in the field of computational fluid.

通过设计不同的快速迭代技术去线性化求解2维及3维具有不同粘性(满足唯一性条件)的定常N-S方程和非定常N-S方程。在小粘性情形下,在细网格(参数为h)上使用m次Oseen有限元迭代方法;在大粘性情形下,利用两水平有限元方法,即在粗网格(参数为H)上,先使用m次Stokes、牛顿或Oseen有限元迭代方法求粗网格解,然后在细网格上进行一次Stokes、牛顿或Oseen有限元修正。当H和h满足一定的尺度关系时,两水平有限元解具有和在细网格上得到的m次迭代解相同的收敛精度,因而节省了计算时间。此外,对于3维N-S方程的数值求解,我们通过合理使用并行计算先进技术来克服计算量大与计算机存贮量有限的困难。我们将在数值计算方面实现求解程序的实用性,在数值分析方面,研究各种迭代方法的稳定性、收敛性和有效性。该项目的研究有助于非线性科学研究的发展和计算流体力学在工程技术中的应用,部分研究成果将达到国际先进水

项目摘要

通过设计不同的快速迭代技术去线性化求解2维及3维具有不同粘性(满足唯一性条件)的定常N-S方程和非定常N-S方程, 包括粘性相关迭代方法和时空迭代方法。在小粘性情形下,在细网格(参数为h)上使用m次Oseen有限元迭代方法;在大粘性情形下,利用两水平有限元方法,即在粗网格(参数为H)上,先使用m次Stokes、牛顿或Oseen有限元迭代方法求粗网格解,然后在细网格上进行一次Stokes、牛顿或Oseen有限元修正。当H和h满足一定的尺度关系时,两水平有限元解具有和在细网格上得到的m次迭代解相同的收敛精度,因而节省了计算时间。进一步, 我们针对小粘性情形下定常N-S方程的求解, 设计了时空迭代方法, 用非定常N-S方程的隐式显式时间推进方法求解定常N-S方程。 此外,对于3维定常N-S方程的数值求解,我们通过合理使用并行计算先进技术来克服计算量大与计算机存贮量有限的困难。我们将在数值计算方面实现求解程序的实用性,在数值分析方面,研究各种迭代方法的稳定性、收敛性和有效性。最后, 我们的研究方法也推广到求解磁流体动力学(MHD)方程, 取得了相应的研究成果. 该项目的研究有助于非线性科学研究的发展和计算流体力学在工程技术中的应用,部分研究成果将达到国际先进水平

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究

DOI:10.19713/j.cnki.43-1423/u.t20201185
发表时间:2021
2

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

DOI:
发表时间:
3

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究

DOI:10.19701/j.jzjg.2015.15.012
发表时间:2015
4

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
5

Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni

Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni

DOI:
发表时间:2015

何银年的其他基金

批准号:10371095
批准年份:2003
资助金额:20.00
项目类别:面上项目
批准号:10671154
批准年份:2006
资助金额:24.00
项目类别:面上项目
批准号:19971067
批准年份:1999
资助金额:8.50
项目类别:面上项目
批准号:11362021
批准年份:2013
资助金额:48.00
项目类别:地区科学基金项目
批准号:10971166
批准年份:2009
资助金额:27.00
项目类别:面上项目
批准号:12026257
批准年份:2020
资助金额:20.00
项目类别:数学天元基金项目
批准号:11771348
批准年份:2017
资助金额:48.00
项目类别:面上项目

相似国自然基金

1

三维N-S方程新型完全重叠型区域分解有限元并行算法研究

批准号:11001061
批准年份:2010
负责人:尚月强
学科分类:A0504
资助金额:17.00
项目类别:青年科学基金项目
2

关于N-S方程惯性流形算法的研究

批准号:19971067
批准年份:1999
负责人:何银年
学科分类:A0504
资助金额:8.50
项目类别:面上项目
3

非定常N-S方程的稳定化有限元方法

批准号:11271273
批准年份:2012
负责人:冯民富
学科分类:A0504
资助金额:65.00
项目类别:面上项目
4

非定常N-S方程全离散多层算法研究

批准号:10371095
批准年份:2003
负责人:何银年
学科分类:A0504
资助金额:20.00
项目类别:面上项目