Diabetic patients are less tolerant to myocardial ischemia reperfusion injury ( IRI ) as compared to non-diabetic, which may be due to excessive activation of PKC beta 2 and inactivation of PI3K / Akt / eNOS pathway in myocardium. However, its underlying mechanisms are still unknown. In our preliminary studies, we found that the activated PKC beta 2 interacted directly with cardiomyocyte caveolins-3 (Cav-3) and negatively regulated Cav-3 function. Furthermore, with immunoprecipitation of monoclonal antibody Cav-3, we also identified the formation of protein complex of PKC beta 2 and Akt in diabetic myocardium. Therefore, we hypothesize that PKC beta 2 activation exacerbates diabetic myocardial IRI through inhibition of Cav-3 / PI3K /Akt / eNOS signaling pathway. In the current proposal, we will use the selective Cav-3 gene knockout mice and primary cultured cardiomyocytes to make diabetic model or high glucose with hypoxia/reoxygenation treated model, incorporating the use of adenovirus transfection and siRNA technology, to elucidate the role and mechanism of PKC beta 2 / Cav-3 / PI3K / Akt / eNOS signaling pathway in diabetic myocardial IRI. This proposed study will improve our understandings of diabetic myocardial IRI and may help facilitate the development of novel and optimal therapies in diabetic and ischemic heart disease.
糖尿病患者心脏较非糖尿病患者更不易耐受缺血再灌注损伤(IRI),这与糖尿病心肌PKC-β2过度活化及PI3K/Akt/eNOS通路失活有关,但其调控机制不明。我们前期研究发现,PKC-β2活化后可与心肌细胞Caveolin-3(Cav-3)直接相互作用并对后者发挥负性调控作用,进一步研究发现在单克隆抗体Cav-3的免疫沉淀下,PKC-β2可与Akt形成蛋白复合体。据此申请者推测PKC-β2负性调控Cav-3/PI3K/Akt/eNOS信号通路而加重糖尿病心肌IRI。本项目拟用Cav-3基因敲除小鼠、原代心肌细胞为研究对象,复制糖尿病心肌IRI模型及高糖与缺氧/再复氧模型,并结合腺病毒转染及siRNA技术,试图阐明PKC-β2/Cav-3/PI3K/Akt/eNOS信号轴在糖尿病心肌IRI中的作用机制,以期为临床开发糖尿病心肌IRI保护药物提供实验依据。
缺血性心脏病在糖尿病患者中具有较高的发病率与死亡率。大量研究表明糖尿病心肌较非糖尿病更不易耐受缺血再灌注损伤(ischemia-reperfusion injury,IRI),然而其机制不明。小窝蛋白-3(Cav-3)是构成心肌细胞质膜中小窝结构(Caveolae)的标记性蛋白分子,其在调控分子转导方面具有重要的作用。在糖尿病状态下,心肌组织PKC-β2过度活化、Cav-3表达降低且PI3K/Akt/eNOS/NO信号通路受损。我们前期研究发现Caveolae是调控PKC-β2活化的关键结构,进一步研究发现PKC-β2活化后可抑制Cav-3的表达水平,从而影响PI3K/Akt/eNOS/NO信号分子途径的转导。因此,我们推测糖尿病心肌PKC-β2过度活化通过下调Cav-3这一“中间环节”从而对PI3K/Akt/eNOS/NO信号通路进行负性调控是糖尿病心肌不易耐受IRI的重要原因。本课题分别在糖尿病心肌IRI模型(在体研究)、原代心肌细胞及H9C2细胞模拟的高糖与缺氧复氧模型(离体研究)进行了相关机制研究。我们研究发现:糖尿病鼠病理进程中心肌组织PKC-β2活化水平逐步增加,而Cav-3表达水平逐渐降低,PKC-β2负性调控的Cav-3信号通路参与了糖尿病心血管并发症的发展,Cav-3下降与NOS系统异常是心脏内源性抗氧化能力下降的重要机制;PKC-β2负性调控Cav-3/PI3K/Akt/eNOS信号通路是糖尿病心肌不易耐受IRI的重要原因,抑制PKC-β2过度活化或是提高Cav-3的表达水平的措施均可以减轻糖尿病心肌IRI。本项目的完成不仅有助于完善糖尿病心肌PKC-β2负性调控Cav-3信号通路的分子机制,而且为治疗和逆转糖尿病性缺血性心脏病提供早期预防和治疗策略,以及为临床开发糖尿病心肌IRI保护药物或措施提供潜在的作用靶点,因而具有明确的理论与实用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
Protective effect of Schisandra chinensis lignans on hypoxia-induced PC12 cells and signal transduction
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling
PTEN/PI-3K/Akt信号通路在糖尿病心肌缺血再灌注损伤中的作用及分子机制
β-catenin调控的信号通路在小鼠心肌缺血再灌注损伤中的作用和分子机制
TLR信号负性调节分子SIGIRR在急性肺损伤中的作用及机制
PGF2α-FP受体信号通路在调控糖尿病性心肌病心肌间质纤维化中的作用