Cutting tools are regarded as teeth of machining tools. Their wear degradation affects cutting quality, efficiency, cost and energy consumption greatly. Accurate remaining useful life prognosis of cutting tools could be a reliable foundation of cutting tool selection and replacement. .Due to the stochastic cutting tool wear degradation process, cutting tool remaining useful life is a random variable with time-varying characteristics. Quantitating the stochasticity of cutting tool wear degradation is believed to improve the credibility and accuracy of cutting tool remaining useful life prognosis..Based on the stochastic process model and degradation data, a mathematic model is built for the milling tool wear degradation and remaining useful life decreasing process. The response mechanism of cutting tool wear degradation and remaining useful life decreasing to cutting parameters is elaborated. By merging real-time acquired data, cutting tool remaining useful life and its confidence interval is estimated during the machining process. These theories and methods are verified by experimental study..This study uncovers the evolution law of the milling tool wear degradation and remaining useful life decreasing process. It puts forward a new milling tool remaining useful life and its confidence interval prognosis method. Under the framework of possibility, the uncertainty of cutting tool remaining useful life prognosis is quantitated and decreased. It also helps to ensure the machining quality with increased efficiency, decreased cost and decreased energy consumption. The study is of great significance for the development of cutting tool wear degradation modelling and remaining useful life prognosis theory.
刀具是“机床的牙齿”,其磨损退化严重影响切削的质量、效率、成本和能耗。准确预测刀具剩余寿命可为刀具选用、更换提供可靠依据。.源于刀具磨损退化过程的随机性,刀具剩余寿命是一个具有时变特征的随机变量。量化表征磨损退化过程的随机性有助于提高剩余寿命预测的精度和可信度。因此,本项目以铣刀为对象,基于随机过程理论和退化历史数据,建立铣刀磨损退化与剩余寿命衰减过程的基础数学模型,阐明切削参数对铣刀磨损退化和剩余寿命衰减的影响机制,研究融合实时监测数据的铣刀剩余寿命及置信区间在线预测方法,并通过实验研究进行验证。.本项目揭示铣刀磨损退化和剩余寿命衰减过程的演变规律,创新刀具剩余寿命及置信区间预测方法,在概率框架下量化并减小预测结果的不确定性。不仅有助于保证质量、提高效率、节约成本、降低能耗,而且对于发展刀具磨损退化建模与剩余寿命预测理论具有重要意义。
刀具的磨损退化严重影响切削的质量、效率、成本和能耗。刀具剩余寿命预测不够准确严重制约了刀具选用、更换的决策和优化。刀具磨损退化是一个随机过程,刀具剩余寿命是一个具有时变特征的随机变量。量化表征磨损退化过程的随机性有助于提高剩余寿命预测的精度和可信度。.因此,本项目基于随机过程理论和退化历史数据,建立了刀具磨损退化与剩余寿命衰减过程的基础数学模型,阐明了切削参数对铣刀磨损退化和剩余寿命衰减的影响机制,研究了融合实时监测数据的铣刀剩余寿命及置信区间在线预测方法,并通过实验研究进行了验证。.研究表明,采用Wiener过程建立刀具磨损退化模型、剩余寿命预测模型,实测刀具剩余寿命都落在了预测值90%的置信区间内,考虑测量误差和个体差异可使预测误差在9%以内,考虑多工况、多阶段切削特征,实测刀具剩余寿命都落在了预测值的95%置信区间内,剩余寿命误差绝对值小于2min,同时考虑磨损量和表面粗糙度可使预测的可靠性提高。.本项目揭示了刀具磨损退化和剩余寿命衰减过程的演变规律,创新了刀具剩余寿命及置信区间预测方法,在概率框架下量化并减小预测结果的不确定性。不仅有助于保证质量、提高效率、节约成本、降低能耗,而且对于发展刀具磨损退化建模与剩余寿命预测理论具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
论大数据环境对情报学发展的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于LASSO-SVMR模型城市生活需水量的预测
基于多模态信息特征融合的犯罪预测算法研究
基于多阶段随机退化过程建模的剩余寿命预测与健康管理方法研究
基于随机过程建模的锂电池剩余寿命预测关键问题研究
工业设备非平稳非独立增量退化过程建模及剩余寿命预测研究
复杂条件下随机退化设备的剩余寿命预测理论与方法研究