With rapid development of high-tech equipment, the requirement for service performances of self-lubricating bearings under harsh conditions is increasing; as the key material, the performance of antiwear and life-extension of self-lubricating fabric liners is very critical, and is also a promising topic in the research field of tribological materials. In this research, based on inherent perperties and structural characteristics of copper nanoparticles and graphene, we designed the composition and structure of core-shell graphene@Cu nanocomplex in the mesoscopic level, and regulated the diffusion of nanoparticles and graphen growth via the facile method named antiwelding agent assisted chemical vapor deposition. Additionally, through increasing the dispersion and stability of the nanocomplexes in fabric liner matrix, the effective cooperation between nanocomplexes and lubricating phrase in matrix will be achieved, and we can also realize the controllable preparation of new long-life self-lubricating fabric liners with environmental adaptabilities under harsh conditions. Through our research, applicability and lubricating reinforcement of the graphene@Cu nanocomplex in different matrix can be clarified, and the novel method for prepare the special lubricating materials can be also obtained. From the point of view of theory and application, the study will be significative for the design and application of the new class of lubricating materials with high performances.
高技术装备的快速发展对自润滑轴承在苛刻工况下的服役性能要求不断提高,作为其关键材料,自润滑织物衬垫材料的耐磨延寿性能至关重要,也成为材料摩擦学领域的重要研究方向。本项目根据铜纳米粒子和石墨烯的固有性能和结构特点,采用新型防烧结辅助化学气相沉积原位生长技术,在微介观层面上合理设计核壳型石墨烯-铜纳米复合体的结构与组成,达到微颗粒分散及表面石墨烯生长可控; 提高石墨烯-铜纳米复合体在织物衬垫基体中的分散性和稳定性,达到纳米复合体与衬垫自润滑相的有效协同作用,实现具有苛刻环境适应性的长寿命新型自润滑织物衬垫材料的可控制备。通过本项目的研究,可以明确石墨烯-铜纳米复合体在不同材料基体中的适用性和润滑增强效果,并掌握此特殊材料制备的条件,为新型工程材料的实际应用提供一种新的技术与方法。该研究对自润滑织物衬垫材料在高新技术领域中无论从基础研究还是应用的角度,都具有重要的科学和实际意义。
在本项目中,我们通过原材料筛选、制备方法优化和微观结构调控,完成了核壳型石墨烯-铜纳米杂化材料的设计与制备,对其在复合材料中的摩擦磨损性能给予较为系统的评价与表征。另外,我们着重研究了作为织物衬垫主体的纤维织物复合材料的整体性能。利用纤维表界面增强和聚合物树脂基体纳米增强方法,我们较为全面地评价了自润滑衬垫织物复合材料在增强后的导热性能、摩擦学性能和力学性能,并进一步研究了自润滑复合材料微观结构与相关性能之间的关系,为具备优异摩擦学性能、长寿命自润滑衬垫复合材料的结构可控与稳定机制找出相应的规律性。而且,我们又尝试制备其他石墨烯类纳米杂化材料。这些纳米材料借助润滑、导热和耐磨的协同作用,表现出优异的润滑耐磨增强性能,相应研究结果可有利于织物衬垫和相关自润滑聚合物复合材料的性能提升,更能够为相关工程用高性能复合材料的实用扩展提供很好的借鉴作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
论大数据环境对情报学发展的影响
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
表面无损修饰-纳米复合填料一体化增强自润滑关节轴承用纤维织物复合材料的设计、制备及摩擦学性能研究
石墨烯/碳纤维多尺度混杂铜基自润滑材料构建及减摩耐磨机制研究
石墨烯负载新型铂基核壳凹型纳米晶的可控制备及其催化性能研究
复杂工况渣浆泵用耐蚀耐磨型机械密封性能及磨损机制研究