With the rapid development of cross-scale precision movement technology, in the fields of nano/micro devices preparation and biological cell testing and refactoring, the High speed, good stability and integration cross-scale precision movement have important scientific significance. This project starting from the study driving mechanism, base on the study of traditional stick-slip driving, a new composite driving mechanism of stick-slip combined with vibration is put forward, the kinematics model of stick-slip vibration compound driving is established, optimize the drive signal waveform and parameters, the single step by step distance and speed is increased. According to the characteristics of the different stick-slip friction in the opposite direction, combined with compound driving mechanism, the microscopic surface texture is designed, the friction mechanics model of typical microscopic surface texture is set up, the precision and consistency of stick-slip cross-scale movement is improved. Combined with the stick-slip vibration compound driving mechanism and the friction interface control method, the magnetic material as body, the PZT as driving device, through the dynamics model of cross-scale precision movement system, the Structure is optimized, the design and testing of high integration cross-scale precision movement prototype modeling is accomplished. Finally realizes high speed, good stability and integration of across scales precision movement.(speed is greater than 20 mm/s, retention is more than10 N, volume is less than 1 cm3, resolution is less than 5 nm, the movement precision is less than 50 nm).
随着跨尺度精密运动技术的快速发展,在纳米器件制备,生物细胞检测和重构等领域,速度快、稳定性好和集成度高的跨尺度精密运动技术具有重要的科学意义。本项目从研究驱动机理出发,基于粘滑驱动方法,提出粘滑与振动相结合的新型粘滑振复合驱动机理,建立粘滑振复合驱动运动学模型,优化驱动信号波形和参数,大幅度提高运动步距和速度;针对粘和滑运动阶段摩擦力异向的特征,结合粘滑振复合驱动机理,设计微观表面织构,建立微观表面织构摩擦力学模型,通过界面调控实现界面摩擦力的各向异性,提高跨尺度精密运动的保持力和一致性;并采用磁性材料为本体,压电陶瓷为驱动器,建立系统动力学模型,并进行结构优化,完成基于粘滑振复合驱动的高集成度跨尺度精密运动平台的设计,并进行实验研究。最终实现速度快、稳定性好和集成度高的跨尺度精密运动。(目标:运动速度20mm/s,保持力10N,体积1cm3,分辨率5nm,运动精度50nm)
随着跨尺度精密运动技术的快速发展,在纳米器件制备,生物细胞检测和重构等领域,速度快、稳定性好和集成度高的跨尺度精密运动技术具有重要的科学意义。本项目基于粘滑驱动方法,提出了粘滑与振动相结合的新型粘滑振复合驱动机理,建立了粘滑振复合驱动运动学模型,优化了驱动信号波形和参数,大幅度提高了运动步距和速度;针对粘和滑运动阶段摩擦力异向的特征,结合粘滑振复合驱动机理,设计了微观表面织构,建立了微观表面织构摩擦力学模型,通过界面调控实现界面摩擦力的各向异性,提高了跨尺度精密运动的保持力和一致性;并采用磁性材料为本体,压电陶瓷为驱动器,建立了系统动力学模型,并进行了结构优化,完成基于粘滑振复合驱动的高集成度跨尺度精密运动平台的设计,并进行了实验研究。最终实现速度快、稳定性好和集成度高的跨尺度精密运动,完成了预期的研究目标。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
跨社交网络用户对齐技术综述
拥堵路网交通流均衡分配模型
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
面向SEM的惯性粘滑驱动跨尺度精密运动机理和实现方法研究
基于粘滑驱动的跨尺度纳米定位运动生成机理及实现方法
基于电荷转移的跨尺度固-固界面摩擦电效应机理研究
精密滚动轴承薄膜润滑的跨尺度摩擦学设计