The electromagnetic vibrator, as the ballast, may vibrate violently with the vibration exciter during its operation, resulting in a dramatic decrease of its safety and service life and an increase in energy consumption. To address these problems, the addition of an energy regeneration suspension system to the vibration exciter assembly is proposed. Moreover, a study based on the energy generation and vibration absorption mechanism, parameter matching, and self-adaptation inverse control during the operation of the vibrator is conducted. First, the kinetic model of the vibration exciter assembly, which includes an energy regenerative suspension, is built, a physical prototyping model is developed, and the kinetic model is verified and improved through prototype tests. Subsequently, the energy generation and vibration absorption mechanism of the suspension system based on the model is explored. The performance of the suspension system in terms of vibration absorption and energy generation is analyzed, the multi-objective optimization problem of the suspension system is addressed with Kriging and the IPSO algorithm, and the parameter matching problem of the suspension system is resolved. Finally, by combining the Lyapunov theory and the suspension system, this study explores the self-adaptation inverse control system of the suspension that outputs the damping force and verifies it through a prototype test. A foundation is established based on the findings of this study and a new method of body vibration absorption and energy supply research during the operation of electromagnetic vibrators is provided. The suspension system is of great academic significance and practice application value.
在电磁式可控震源车作业过程中,整车会作为配重随激振器剧烈振动,严重降低其安全性和工作寿命,并造成大量的能量损耗。针对此问题,本项目提出在震源车激振器总成中增加馈能悬架系统,并基于此开展震源车作业过程中的馈能减振机理、系统参数匹配和自适应逆控制研究。首先,建立包含馈能悬架在内的激振器总成动力学模型,开发其缩尺物理样机模型,通过样机试验对动力学模型进行验证与完善;其次,基于该动力学模型研究悬架系统的馈能减振机理,分析其减振和馈能性能,并利用样机试验对研究结果进行验证;再次,针对震源车的实际工况,利用Kriging和IPSO算法求解悬架系统的多目标优化问题,得到悬架系统参数匹配方案;最后,结合Lyapunov理论对悬架输出阻尼力的自适应逆控制系统进行研究,并通过样机试验进行验证。本项目的研究成果将为电磁式可控震源车作业过程中的车身减振和能量供给提供新的研究基础,具有重要的学术意义和实际应用价值。
在电磁式可控震源车作业过程中,整车会作为配重随激振器剧烈振动,严重降低其安全性和工作寿命,并造成大量的能量损耗。针对此问题,本项目提出在震源车激振器总成中增加馈能悬架系统,并基于此开展震源车作业过程中的馈能减振机理、系统参数匹配和自适应逆控制研究。首先,建立包含馈能悬架在内的激振器总成动力学模型,开发其缩尺物理样机模型,通过样机试验对动力学模型进行验证与完善;其次,基于该动力学模型研究悬架系统的馈能减振机理,分析其减振和馈能性能,并利用样机试验对研究结果进行验证;再次,针对震源车的实际工况,利用Kriging和IPSO算法求解悬架系统的多目标优化问题,得到悬架系统参数匹配方案;最后,结合Lyapunov理论对悬架输出阻尼力的自适应逆控制系统进行研究,并通过样机试验进行验证。本项目的研究成果将为电磁式可控震源车作业过程中的车身减振和能量供给提供新的研究基础,具有重要的学术意义和实际应用价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
前轮驱动轿车动力总成液力悬置隔振技术研究
宽高频耦合激振下可控震源平板疲劳损伤机理及可靠性优化研究
大长径比智能减振刀具减振机理与智能调控方法
大跨桥梁阻尼消能减振技术研究