The key to realize long campaign life of blast furnace is whether can form a stable protective layer on hot face of hearth refractory. The hearth damage investigations of blast furnaces that slag phase is a key component of hearth protective layer, but where it came from and how it formed is not yet clear, thus restricts the development of blast furnace hearth protective layer precision control technology and blast furnace longevity technology. In this project, firstly analyze the microstructure and phase composition of slag phase in hearth protective layer sampled from different blast furnaces, and the structural characteristics of slag phase in blast furnace hearth protective layer were extracted; Secondly study the interaction in slag, alklis and hearth lining refractory system, then master the effect of slag viscosity change on refractory erosion, and clarify the infiltrability of the ions of Ca, Si, Mg, Al, Mn and Fe into the surface of hearth refractory; Thirdly reveal the properties of high alkalis content slag system, find out the action mechanism of alkalis with two paths of slag as carrier and vapor form on the matrix and ash of hearth refractory; Finally reveal the interphase mass transfer regularity among ‘slag-alkali vapor-refractory’ with ‘liquid-gas-solid’ phases, master the formation mechanism of slag phase in blast furnace hearth protective layer, and clarify its effect on hearth refractory heterogeneous corrosion, construct the scientific support for blast furnace longevity technology.
实现高炉安全长寿的关键是能否在炉缸耐火材料热面形成稳定的保护层,高炉破损调查发现渣相是炉缸保护层的关键组元,但其具体来源和形成机理尚不明晰,因此制约了高炉炉缸保护层精准调控技术的开发,以及高炉长寿技术的发展。本项目首先对取自不同高炉炉缸保护层中的渣相进行显微结构、物相组成等分析,提取出高炉炉缸保护层渣相的结构特征;然后研究炉渣、碱金属与炉缸耐火材料间的交互作用行为,掌握炉渣粘度变化对耐火材料侵蚀作用的影响规律,并明晰Ca、Si、Mg、Al、Mn和Fe等离子对于炉缸耐火材料表面的渗透能力差异;揭示富碱六元渣系的性能,弄清碱金属分别以炉渣作为载体和以蒸气状态两种来源路径对于炉缸耐火材料基体与灰分相的作用机制;最终,揭示“炉渣-碱金属蒸气-耐火材料”液-气-固三相间的相际传质规律,掌握高炉炉缸保护层中渣相的成因,并明晰其对炉缸耐火材料抵御多相侵蚀的作用属性,为高炉长寿技术奠定科学支撑。
本项目基于高炉解剖研究,提取不同高炉炉缸保护层的渣相结构特征;明晰焦炭灰分/炉渣与炉缸耐火材料界面反应及热动力学;解析富碱渣/碱金属蒸气对炉缸耐火材料的作用行为;揭示“炉渣-碱金属蒸气-耐火材料”液-气-固三相间的相际传质规律,掌握高炉炉缸保护层中渣相的成因及调控措施。得出的主要结果如下:.(1)高炉炉缸保护层含铁相、石墨相、渣相、CaS以及Ti(C,N)相等,渣相成分为Ca-Si-Al-Mg系,其Al2O3高达25.32%,远高于高炉终渣。.(2)温度越高,时间越长,各种元素的传输速率越大,传输速率依次为Ca2+>>Si2+>Al3+。炉渣中CaO、MnO和FeO产生的O2-以及CaF2产生的F-能够简化炉渣网络结构,降低炉渣粘度,加快炉渣对碳复合砖的渗透,CaS固相质点的存在将会降低渣相流动性,减缓炉渣与碳复合砖的界面反应。.(3)富碱渣粘度随碱度的增大而减小,随碱金属(K2O或Na2O)增加而降低。碱金属可与耐材基质中SiO2、Al2O3反应生成的钾霞石、白榴石类物相,加剧耐材侵蚀。耐材侵蚀程度增加,残留耐材灰分溶入铁液参与局部造渣,可为富渣保护层形成提供物质条件。.(4)大部分碱金属停留在耐材热面渣相中,少部分碱金属穿过渣层渗透到耐材中,与耐材基质反应生成霞石、白榴石。保护层中渣相来源于焦炭灰分、耐材灰分、死料柱中的炉渣,三种渣相在耐材热面作用,最终在炉缸侧壁形成富渣保护层,可通过加强炉缸冷却、减弱铁水环流、优化渣铁成分、提高焦炭质量调控保护层渣相的形成。
{{i.achievement_title}}
数据更新时间:2023-05-31
熔融炼铁与粉煤气化耦合制备高浓度还原气方法
Ordinal space projection learning via neighbor classes representation
状态热图在AGC伺服缸早期振动辨识中的应用
基于纳米铝颗粒改性合成稳定的JP-10基纳米流体燃料
Image super-resolution based on sparse coding with multi-class dictionaries
高炉炉缸渣铁焦物相界面及渣铁穿焦行为研究
高炉炉缸保护层多元体系的形成与演变
熔渣体系中铬铁合金界面保护层形成机制及阳极析氧机理研究
转炉熔渣炉内循环利用的基础研究